Cho m là số gồm 2003 chữ số 1 ; n là số gồm 101 chữ số 2 . Chứng minh m.n-2 chia hết cho 3
Cho m gồm 2003 chữ số 1
n gồm 101 chữ số 2
Chứng minh rằng: mn-2 chia hết cho 3.
Do m gồm 2003 chữ số 1 => tổng các chữ số của m là: 2003 x 1 = 2003 chia 3 dư 2
=> m chia 3 dư 2
Do n gồm 101 chữ số 2 => tổng các chữ số của n là: 101 x 2 = 202 chia 3 dư 1
=> n chia 3 dư 1
=> m.n chia 3 dư 2
=> m.n - 2 chia hết cho 3
=> đpcm
Ủng hộ mk nha ^_-
Bài 1: Cho A = 2004 x 2004 x ... x 2004 (A gồm 2003 thừa số) và B = 2003 x 2003 x ... x 2003 (B gồm 2004 thừa số). Hãy cho biết A + B có chia hết cho 5 hay không? Vì sao?
Bài 2: Biết rằng số A chỉ viết bởi các chữ số 9. Hãy tìm số tự nhiên nhỏ nhất mà cộng số này với A ta được số chia hết cho 45.
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 (C có 2002 thừa số 2004).
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 (vì 6 x 4 = 24).
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) = (2003 x 2003 x
2003 x 2003) x x (2003 x 2003 x 2003 x 2003). Vì 2004 : 4 = 501
(nhòm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. Tận cùng
của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). Vậy tận
cùng của A + B là 4 + 1 = 5. Do đó A + B chia hết cho 5.
bài 1:
A = (2004 x 2004 x x 2004) x 2004 = C x 2004 ( có 2002 thừa số 2004)
C có tận cùng là 6 nhân với 2004 nên A có tận cùng là 4 ( vì 6 x 4 = 24)
B = 2003 x 2003 x x 2003 (gồm 2004 thừa số) =( 2003 x 2003 x 2003 x 2003) x x (2003 x 2003 x 2003 x 2003 ). vì 2004 : 4 = 501 (nhóm) nên B có 501 nhóm, mỗi nhóm gồm 4 thừa số 2003. tận cùng của mỗi nhóm là 1 (vì 3 x 3 = 9 ; 9 x 3 = 27 ; 27 x 3 = 81). vậy tận cùng của A + B là 4 + 1 = 5. do đó A + B chia hết cho 5
Bài số 32
Cho M = X459Y. Hãy thay X,Ybởi chữ số thích hợp để nếu lấy A lần lượt chia cho 2,5,9 thì cùng có số dư là 1.
Bài số 33
Cho P = 2004 x 2004 x… x 2004 (P gồm 2003 thừa số) và Q = 2003 x 2003 x… x2003 (Q gồm 2004 thừa số) Hãy cho biết P + Q có chia hết cho 5 hay không? Vì sao?
Bài tập toán lớp 4 nâng cao số 34
34a) Không dùng máy tính học sinh cầm tay, hãy tính tổng
1/7 + 1/8 + 1/9 + 1/10 + 1/11 + 1/14 + 1/15 + 1/18 + 1/22 + 1/24 34b) Tìm phân số a/b trong mỗi biểu thức sau
2/9 x a/b = 5/6
3/7 ÷ a/b = 5/7
Giải xong Các bạn kết Bạn với Mình nhé
Ai giúp mình cho 3 tick . Cảm ơn các bạn
a) CMR : tồn tại một số tự nhiên chỉ toàn chữ số 2 và chia hết cho 2003
b) CMR : tồn tại một số tự nhiên gồm toàn chữ số 6 và chia hết cho 2003
1) CMR tồn tại 1 số gồm toàn chữ số 6 chia hết cho 2003
2)CMR tồn tại hay không 1 số tự nhiên só tận cùng là 2002 chia hết cho 2003
3) Cho 2001 số bất kì.CMR có thể chonk 1 hoặc 1 số số mà tổng của chúng chia hết cho 2001
4) Trong 1 tam giác đều cạnh là 1.Ta đặt 17 điểm kể cả trên các cạnh.CMR tồn tai 2 điểm mà khoảng cách giữa chúng nhỏ hơn hoặc bằng 1/4
Cho 2 số M và N: M gồm 2n chữ số 1; N gồm n chữ số 4
CMR: M + N + 1 là 1 số chính phương
Ta có: M + N + 1 = 111...1 + 444...4 + 1
(2n c/s 1)(n c/s 4)
= 111...1 x 1000...0 + 111...1 + 111...1 x 4 + 1
(n c/s 1) (n c/s 0) (n c/s 1) (n c/s 1)
= 111...1 x (1000...0 + 1 + 4) + 1
(n c/s 1) (n c/s 0)
= 111...1 x 1000...05 + 1
(n c/s 1) (n-1 c/s 0)
= 111...1 x 3 x 333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 333...3 x 333...35 + 1
(n c/s 1) (n-1 c/s 3)
= 333...3 x 333...34 + 333...3 + 1
(n c/s 3) (n-1 c/s 3) (n c/s 3)
= 333...3 x 333...4 + 333...34
(n c/s 3) (n-1 c/s 3) (n-1 c/s 3)
= 333...342 là số chính phương (đpcm)
(n-1 c/s 3)
Ta chứng minh được
\(\overline{aaa....a}\) ( n số a)
\(=\frac{\left(10^n-1\right)}{9}.a\)
\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)}{9}+\frac{\left(10^n-1\right)}{9}.4+1\)
\(\Rightarrow M+N+1=\frac{\left(10^{2n}-1\right)+\left(10^n-1\right)4+9}{9}\)
\(\Rightarrow M+N+1=\frac{10^{2n}-1+4.10^n-4+9}{9}\)
\(\Rightarrow M+N+1=\frac{10^{2n}+4.10^n+4}{9}\)
\(\Rightarrow M+N+1=\frac{\left(10^n\right)^2+2.10^n.2+2^2}{9}\)
\(\Rightarrow M+N+1=\frac{\left(10^n+2\right)^2}{9}\)
\(\Rightarrow M+N+1=\left[\frac{\left(10^n+2\right)}{3}\right]^2\)
Mặt khác \(10^n+2=100...02\) ( n - 1 ) số 0
Tổng chữ số \(=1+0\left(n-1\right)+2=3⋮3\)
=> \(10^n+2⋮3\)
=> \(\frac{\left(10^n+2\right)}{3}\in N\)
\(\Rightarrow\left[\frac{\left(10^n+2\right)}{3}\right]^2\) là số chính phương
=> M+N+1 là số chình phương
Cho 2 số tự nhiên M và N:
M gồm 2n chữ số 1; N gồm n chữ số 4
Chứng minh rằng: M + N + 1 là số chính phương
Đề bài là chứng minh ko fai tìm
cho x=111...1(2004 chữ số 1) và y=1000...05(2003 chữ số 0) chứng tỏ rằng xy+1 là một số chín phương
Ta có:
xy + 1 = 1111...1.1000...05 + 1
(2004 c/s 1)(2003 c/s 0)
xy + 1 = 1111...1.3.333...35 + 1
(2004 c/s 1)(2003 c/s 3)
xy + 1 = 3333...3.333...35 + 1
(2004 c/s 3)(2003 c/s 3)
xy + 1 = 3333...3.333...34 + 3333...3 + 1
(2004 c/s 3)(2003 c/s 3)(2004 c/s 3)
xy + 1 = 3333...34.3333...34
(2003 c/s 3)(2003 c/s 3)
xy + 1 = 3333...342 là số chính phương
(2003 c/s 3)
Chứng tỏ ...
Ta co
x=10^2003 10^2002 ... 10^0
10x=10^2004 ... 10^1
Suy ra 9x=10^2004-1
hay x=(10^2004-1)/9
Mat khac
y=10^2004 5
Do do
xy 1=(10^2004-1)(10^2004 5)/9 1
=(10^4008 4.10^2004 4)/9
=[(10^2004 2)/3]^2
Lai co 10^2004 2 co tong cac chu so =3 nen chia het cho 3
Suy ra (10^2004 2)/3 la so tu nhien.
Vay xy 1 la scp.
Cho P = 2004 x 2004 x ....... 2004 ( P gồm 2003 thừa số ) và Q = 2003 x 2003 x ....... x 2003 ( Q gồm 2004 thừa số ) Hãy cho biết P + Q có chia hết cho 5 không ? Vì sao