2015*2014-1/2015*2013+2014
Tính:
\(\frac{1}{1+\frac{2013}{2014}+\frac{2013}{2015}}+\frac{1}{1+\frac{2014}{2015}+\frac{2014}{2013}}+\frac{1}{1+\frac{2015}{2013}+\frac{2015}{2014}}\)
(1/2012+1/2013-1/2014)/(5/2012+5/2013-5/2014)-(2/2103+2/2014-2/2015)/(3/2013+3/2014-3/2015)
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
So sánh : C= 2013/2013+2014 + 2014/2014+2015 + 2015/2015+2016 ; D=2
\(C=\dfrac{2013}{2013}+2014+\dfrac{2014}{2014}+2015+\dfrac{2015}{2015}+2016\)
\(=1+2014+1+2015+1+2016\)
\(=6048>2\)
Vậy: \(C>D\)
Tính
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
Đặt \(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}=B;\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}=C\)
\(A=\left(B+1\right)\cdot C-B\cdot\left(C+1\right)\)
\(=BC+C-BC-B\)
=C-B
\(=\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}-\dfrac{1}{5}-\dfrac{2013}{2014}-\dfrac{2015}{2016}=-\dfrac{1}{10}\)
Cho a^2014 + b^2014 + c^2014 =1 và a^2015 + b^2015 + c^2015 =1. Tính tổng A= a^2013+b^2014+c^2015
a2014+b2014+c2014=1
a2015+b2015+c2015=1
=>a2014+b2014+c2014=a2015+b2015+c2015=1
=>a=b=1
=>A=3
Tìm x biết:
x-2014-2015/2013 + x-2013-2015/2014 + x-2014-2013/2015=3
\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)
\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)
bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé
Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều
So sánh:
a) A=9^10 và B= ( 8^9+7^9+6^9+...+2^9+1^9)
b) P= 2013/2014 + 2014/2015 + 2015/2016 với Q= 2013+2014+2015 / 2014+2015+2016
\(A=\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}+1\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}\right)-\left(\dfrac{1}{5}+\dfrac{2013}{2014}+\dfrac{2015}{2016}\right)\left(\dfrac{2013}{2014}+\dfrac{2015}{2016}+\dfrac{1}{10}+1\right)\)
tất nhên là bằng 00000000000000000000000000000000000000