Những câu hỏi liên quan
LB
Xem chi tiết
XO
1 tháng 10 2020 lúc 21:57

Ta có :\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)

=> \(\left(\frac{x+4}{2018}+1\right)+\left(\frac{x+3}{2019}+1\right)=\left(\frac{x+2}{2020}+1\right)+\left(\frac{x+1}{2021}+1\right)\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)

=> \(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)

=> \(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)

Vì \(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\)

=> x + 2022 = 0

=> x = -2022

Vậy x = -2022

Bình luận (0)
 Khách vãng lai đã xóa
CQ
1 tháng 10 2020 lúc 22:04

\(\frac{x+4}{2018}+\frac{x+3}{2019}=\frac{x+2}{2020}+\frac{x+1}{2021}\)  

\(\frac{x+4}{2018}+1+\frac{x+3}{2019}+1=\frac{x+2}{2020}+1+\frac{x+1}{2021}+1\) 

\(\frac{x+4}{2018}+\frac{2018}{2018}+\frac{x+3}{2019}+\frac{2019}{2019}=\frac{x+2}{2020}+\frac{2020}{2020}+\frac{x+1}{2021}+\frac{2021}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}=\frac{x+2022}{2020}+\frac{x+2022}{2021}\)   

\(\frac{x+2022}{2018}+\frac{x+2022}{2019}-\frac{x+2022}{2020}-\frac{x+2022}{2021}=0\)   

\(\left(x+2022\right)\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\right)=0\)   

\(x+2022=0\left(\frac{1}{2018}+\frac{1}{2019}-\frac{1}{2020}-\frac{1}{2021}\ne0\right)\)   

\(x=0-2022\) 

\(x=-2022\)

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
TT
15 tháng 5 2021 lúc 8:23

\(\dfrac{x+1}{2021}+\dfrac{x+2}{2020}=\dfrac{x+3}{2019}+\dfrac{x+4}{2018}\)

=>\(\dfrac{x+1}{2021}+1+\dfrac{x+2}{2020}+1=\dfrac{x+3}{2019}+1+\dfrac{x+4}{2018}+1\)

=>\(\dfrac{x+2022}{2021}+\dfrac{x+2022}{2020}=\dfrac{x+2022}{2019}+\dfrac{x+2022}{2018}\)

=> (x+2022)(\(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\))=0

=>x+2022=0

=> x=-2022

Bình luận (0)

x−42021+x−32020=x−22019+x−12018" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

x−42021+x−32020−x−22019−x−12018=0" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-table; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

x−42021)+(1+x−32020)−(1+x−22019)−(1+x−12018)=0" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">⇔ x+20172021+x+20172020−x+20172019−x+20172018=0" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

12021+12020−12019−12018)=0" role="presentation" style="border:0px; box-sizing:border-box; direction:ltr; display:inline-block; float:none; font-size:15.82px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-break:break-word; word-spacing:normal" class="MathJax_CHTML mjx-chtml">

⇔ x + 2017 = 0

⇔ x = -2017

Bình luận (0)
 Khách vãng lai đã xóa
NU
17 tháng 3 2020 lúc 7:13

\(\frac{x-1}{2020}+\frac{x-2}{2021}=\frac{x+1}{2018}+\frac{x+2}{2017}\)

\(\Leftrightarrow\frac{x-1}{2020}+1+\frac{x-2}{2021}-1=\frac{x+1}{2018}+1+\frac{x+2}{2017}+1\)

\(\Leftrightarrow\frac{x+2019}{2020}+\frac{x+2019}{2021}=\frac{x+2019}{2018}+\frac{x+2019}{2017}\)

\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\right)=0\)

mà \(\frac{1}{2020}+\frac{1}{2021}-\frac{1}{2018}-\frac{1}{2017}\ne0\)

\(\Leftrightarrow x+2019=0\)

\(\Leftrightarrow x=-2019\)

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
CN
1 tháng 1 2018 lúc 14:04

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}=\dfrac{x-2}{2019}+\dfrac{x-1}{2018}\)

\(\dfrac{x-4}{2021}+\dfrac{x-3}{2020}-\dfrac{x-2}{2019}-\dfrac{x-1}{2018}=0\)

\(\left(1+\dfrac{x-4}{2021}\right)+\left(1+\dfrac{x-3}{2020}\right)-\left(1+\dfrac{x-2}{2019}\right)-\left(1+\dfrac{x-1}{2018}\right)=0\)\(\dfrac{x+2017}{2021}+\dfrac{x+2017}{2020}-\dfrac{x+2017}{2019}-\dfrac{x+2017}{2018}=0\)

\(\left(x+2017\right)\left(\dfrac{1}{2021}+\dfrac{1}{2020}-\dfrac{1}{2019}-\dfrac{1}{2018}\right)=0\)

⇔ x + 2017 = 0

⇔ x = -2017

Vậy x = -2017

Bình luận (0)
H24
26 tháng 6 2021 lúc 17:01

lol

Bình luận (0)
NN
Xem chi tiết
LD
17 tháng 9 2020 lúc 20:12

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

Vì \(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

=> x + 2020 = 0

=> x = -2020

Bình luận (0)
 Khách vãng lai đã xóa
H24
17 tháng 9 2020 lúc 20:15

            Bài làm :

Ta có :

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\left(\frac{x+1+2019}{2019}\right)+\left(\frac{x+2+2018}{2018}\right)+\left(\frac{x+3+2017}{2017}\right)=\left(\frac{x-1+2021}{2021}\right)+\left(\frac{x-2+2022}{2022}\right)+\left(\frac{x-3+2023}{2023}\right)\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

 \(\text{Vì : }\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\ne0\)

\(\Rightarrow x+2020=0\Leftrightarrow x=-2020\)

Vậy x=-2020

Bình luận (0)
 Khách vãng lai đã xóa
NL
11 tháng 3 2021 lúc 13:15

\(\frac{x+1}{2019}+\frac{x+2}{2018}+\frac{x+3}{2017}=\frac{x-1}{2021}+\frac{x-2}{2022}+\frac{x-3}{2023}\)

\(\Leftrightarrow\left(\frac{x+1}{2019}+1\right)+\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)=\left(\frac{x-1}{2021}+1\right)+\left(\frac{x-2}{2022}+1\right)+\left(\frac{x-3}{2023}+1\right)\)

\(\Leftrightarrow\frac{x+1+2019}{2019}+\frac{x+2+2018}{2018}+\frac{x+3+2017}{2017}=\frac{x-1+2021}{2021}+\frac{x-2+2022}{2022}+\frac{x-3+2023}{2023}\)\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}=\frac{x+2020}{2021}+\frac{x+2020}{2022}+\frac{x+2020}{2023}\)

\(\Leftrightarrow\frac{x+2020}{2019}+\frac{x+2020}{2018}+\frac{x+2020}{2017}-\frac{x+2020}{2021}-\frac{x+2020}{2022}-\frac{x+2020}{2023}=0\)

\(\Leftrightarrow\left(x+2020\right)\left(\frac{1}{2019}+\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2021}-\frac{1}{2022}-\frac{1}{2023}\right)=0\)

\(\Leftrightarrow x+2020=0\)

\(\Leftrightarrow x=-2020\)

Bình luận (0)
 Khách vãng lai đã xóa
LG
Xem chi tiết
CH
30 tháng 12 2017 lúc 21:26

khó hiểu vcl

Bình luận (0)
H24
31 tháng 12 2017 lúc 15:14

đúng lun ko hiểu một chút nào
 

Bình luận (0)
CH
31 tháng 12 2017 lúc 15:15

mãi mới có người đồng cảm...T-T

Bình luận (0)
MH
Xem chi tiết
NM
5 tháng 10 2021 lúc 21:12

\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)

Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương

\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)

Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm

\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)

Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm

Bình luận (1)
AH
5 tháng 10 2021 lúc 21:30

1a. Đề lỗi

1b. 

PT $\Leftrightarrow (x+2)^2+(y-1)^2=25$

$\Leftrightarrow (x+2)^2=25-(y-1)^2\leq 25$

$(x+2)^2$ là scp không vượt quá $25$ nên có thể nhận các giá trị $0,1,4,9,16,25$

Nếu $(x+2)^2=0\Rightarrow (y-1)^2=25$

$\Rightarrow (x,y)=(-2, 6), (-2, -4)$
Nếu $(x+2)^2=1\Rightarrow (y-1)^2=24$ không là scp (loại)

Nếu $(x+2)^2=4\Rightarrow (y-1)^2=21$ không là scp (loại)

Nếu $(x+2)^2=9\Rightarrow (y-1)^2=16$

$\Rightarrow (x,y)=(1, 5), (1, -3), (-5,5), (-5, -3)$

Nếu $(x+2)^2=25\Rightarrow (y-1)^2=0$

$\Rightarrow (x,y)=(3, 1), (-7, 1)$

Bình luận (0)
AH
5 tháng 10 2021 lúc 21:33

1c. 

Vì $x^2$ là scp nên $x^2\equiv 0,1\pmod 3$

$3(y-1)^2\equiv 0\pmod 3$

$\Rightarrow x^2+3(y-1)^2\equiv 0,1\pmod 3$

Mà $2021\equiv 2\pmod 3$
Do đó pt $x^2+3(y-1)^2=2021$ vô nghiệm

1d.

Ta thấy:

$(3x-1)^{2020}$ là scp không chia hết cho $3$ nên $(3x-1)^{2020}\equiv 1\pmod 3$

$18(y-2)^{2019}\equiv 0\pmod 3$

$\Rightarrow (3x-1)^{2020}+18(y-2)^{2019}\equiv 1\pmod 3$
Mà $2019^{2020}\equiv 0\pmod 3$
Do đó pt vô nghiệm.

Bình luận (0)
NC
Xem chi tiết
HP
1 tháng 1 2021 lúc 17:48

\(x=0\) không là nghiệm của phương trình

Chia hai vế phương trình cho x, phương trình trở thành:

\(\left(x+\dfrac{4}{x}\right)+2-m=4\sqrt{x+\dfrac{4}{x}}\left(1\right)\)

Đặt \(x+\dfrac{4}{x}=t\left(t\ge2\right)\)

\(\left(1\right)\Leftrightarrow m=f\left(t\right)=t^2-4t+2\left(2\right)\)

Phương trình đã cho có nghiệm khi phương trình \(\left(2\right)\) có nghiệm \(t\ge2\)

\(\Leftrightarrow m\ge f\left(2\right)=-2\)

\(\Rightarrow\) có 2021 giá trị thỏa mãn yêu cầu bài toán

Bình luận (0)
KF
Xem chi tiết
NT
5 tháng 10 2021 lúc 21:16

Bài 2: 

Ta có: \(16x+40=10\cdot3^2+5\left(1+2+3\right)\)

\(\Leftrightarrow16x+40=90+30\)

\(\Leftrightarrow16x=80\)

hay x=5

Bình luận (1)
H24
5 tháng 10 2021 lúc 21:47

Bài 1 :

[( 35 - 5 ) : 3 ]3 + 3

= [30 : 3]3 + 3

= 103 + 3

= 1000 + 3

= 1003

Đây nha bạn!!!

Chúc bạn học tốt!!!hihi

Bình luận (1)
KN
14 tháng 9 2023 lúc 20:25

Câu này dễ quá

Bình luận (0)