Tìm 5giá trị của x biết 1/3
a) tìm giá trị của a, biết:
( 1 + 4 + 7 + ........... + 100) : a = 17
b) tìm giá trị của X biết: ( X - 1/2) x 5/3 = 7/4 - 1/2
a) Ta có:
1; 4; 7;...; 100 có (100 - 1) : 3 + 1 = 34 (số)
1 + 4 + 7+ ... + 100 = (100 + 1) × 34 : 2
= 101 × 17
(1 + 4 + 7 + ... + 100) : a = 17
101 × 17 : a = 17
a = 101 × 17 : 17
a = 100
b) (X - 1/2) × 5/3 = 7/4 - 1/2
(X - 1/2) × 5/3 = 5/4
X - 1/2 = 5/4 : 5/3
X - 1/2 = 3/4
X = 3/4 + 1/2
X = 5/4
a) (1 + 4 + 7 +...+ 100) : a = 17
1717 : a = 17
a = 101
b) \(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{7}{4}-\dfrac{1}{2}\)
\(\left(x-\dfrac{1}{2}\right)\times\dfrac{5}{3}=\dfrac{10}{8}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\div\dfrac{5}{3}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{10}{8}\times\dfrac{3}{5}\)
\(\left(x-\dfrac{1}{2}\right)=\dfrac{3}{4}\)
\(x-\dfrac{1}{2}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}+\dfrac{1}{2}\)
\(x=\dfrac{5}{4}\)
a. (1+4+7+...+100):a=17
=> ( 100 + 1) x 32 : 2 : a = 17
=> 1717 : a = 17
=> a = 101
b. \(\left(X-\dfrac{1}{2}\right).\dfrac{5}{3}=\dfrac{7}{4}-\dfrac{2}{4}\)
\(\left(X-\dfrac{1}{2}\right).\dfrac{5}{3}=\dfrac{5}{4}\)
\(X-\dfrac{1}{2}=\dfrac{3}{4}\)
\(X=\dfrac{1}{4}\)
Tìm 3 giá trị của X , biết 1/3 < X < 1/2
Cho a = giá trị tuyệt đối x+x
rút gọn a
tính giá trị của a biết x thuộc tập hợp -1/2 0
tìm giá trị nhỏ nhất của a
tìm x biết giá giá trị a=1/3
tìm 5 giá trị của x biết 1/3 <x<3/4
1. Tìm các giá trị nguyên của x để B nhận giá trị nguyên 2.Tìm các giá trị của x để B nhận giá trị nguyên 3. Tìm x biết : (căn x - 2).B + x - 3.căn x + căn 3 - 3x < hoặc bằng 0 B = căn x + 1/căn x - 2 Plsss làm ơn giúp t vs tớ ko bt làm mà cô này hay chửi t lắm huhu
Cho biểu thức C =( \(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\)):(1-\(\dfrac{x^2-2}{x^2+x+1}\))
a) Rút gọn C
b) Tính giá trị của C biết |1-x| +2 =3(x+1)
c) Tìm x nguyên để C nguyên
d) Tìm x biết |C| > C
e) Tìm x để C2-C + 1 đạt giá trị nhỏ nhất
\(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
ĐKXĐ: \(x\ne1\)
\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)
\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)
\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)
\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)
\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)
Tìm x biết:
Giá trị tuyệt đối của x+1+giá trị tuyệt đối của x+3 =3x
/x+1/+/x+3/=3x
\(\orbr{\begin{cases}-x+1+-x+3=3x\\x+1+x+3=3x\end{cases}}\)
\(\orbr{\begin{cases}-x.2+4=3x=>4=5x=>x=\frac{4}{5}\\2x+4=3x=>x=4\end{cases}}\)
1) Tìm x biết:|2x+3|-2|4-x|=5
Tìm giá trị tuyệt đối của x để:|x+3|+|x+1|
Bài 3: Tìm giá trị của x biết:
(x - 1)(x + 1)-(x - 2)2=0
\(\Leftrightarrow x^2-1-x^2+4x-4=0\Leftrightarrow4x-5=0\Leftrightarrow x=\dfrac{5}{4}\)