phân tích các đa thức sau thành nhân tử a^3 - 6a^2b + 12ab^2 - 8b^3
phân tích đa thức thành nhân tử
a)25x^2-4a^2+12ab-9b^2
b)x^3+x^2y-xy^2-y^3
\(a.25^2-4a^2+12ab-9b^2\\ =25^2-\left(4a^2+12ab-9b^2\right)\\ =25^2-\left(2a-3b\right)^2\\ =\left(25-2a+3b\right)\left(25+2a-3b\right)\\ b.x^3+x^2y-xy^2-y^3\\ =x^2\left(x+y\right)-y^2\left(x+y\right)\\ =\left(x+y\right)\left(x^2-y^2\right)\\ =\left(x+y\right)\left(x+y\right)\left(x-y\right)\\ =\left(x+y\right)^2\left(x-y\right)\)
a: Ta có: \(25x^2-4a^2+12ab-9b^2\)
\(=25x^2-\left(2a-3b\right)^2\)
\(=\left(5x-2a+3b\right)\left(5x+2a-3b\right)\)
b: Ta có: \(x^3+x^2y-xy^2-y^3\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y\right)^2\)
Phân tích đa thức thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
Phân tích các đa thức sau thành nhân tử :
a) 4a^2b^2 + 36a^2b^3 + 6ab^4
b) 3n( m - 3 ) + 5m( m - 3 )
c) 2a( x - y ) - ( y - x )
d) 4a^2b^3 - 6a^3b^2
4a2b2 + 36a2b3 + 6ab4
= 2ab2(2a + 18ab + 3b2)
3n(m - 3) + 5m(m - 3)
= (3n + 5m)(m - 3)
2a(x - y) - (y - x)
= (x - y)(2a + 1)
4a2b3 - 6a3b2
= 2a2b2(2b - 3a)
Phân tích các đa thức sau thành phân tử pp đặt nhân tử chung 2ab^2 - a^2b - b^3
\(2ab^2-a^2b-b^3=b^2\left(2a-a^2-b\right)\)
\(2ab^2-a^2b-b^3\)
\(=-b\left(a^2-2ab+b^2\right)\)
\(=-b\left(a-b\right)^2\)
-(2ab2 - a2b - b3)
= b(-2ab + a2 + b2)
= b(a2 - 2ab + b2)
= b(a - b)2
a)rút gon các đa thức sau: (x+3)(x – 3) – (x – 3)2
b) phân tích đa thức thành nhân tử: x 2 – y 2 – 5x +5y
\(a,=x^2-9-x^2+6x-9=6x-18\\ b,=\left(x-y\right)\left(x+y\right)-5\left(x-y\right)=\left(x+y-5\right)\left(x-y\right)\)
2x^3+16y^3
\(\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)+\left(x-3\right)^2\)
\(=\left(2x+1\right)^2+2\left(2x-1\right)\left(x-3\right)+\left(x-3\right)^2\)
\(=\left(2x+1+x-3\right)^2\)
\(=\left(3x-2\right)^2\)
------------------------------------
\(a^3+3a^2-6a-8\)
\(=a^3+4a^2-a^2-4a-2a-8\)
\(=\left(a^3+4a^2\right)-\left(a^2+4a\right)-\left(2a+8\right)\)
\(=a^2\left(a+4\right)-a\left(a+4\right)-2\left(a+4\right)\)
\(=\left(a+4\right)\left(a^2-a-2\right)\)
\(=\left(a+4\right)\left(a^2-2a+a-2\right)\)
\(=\left(a+4\right)\left[\left(a^2-2a\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left[a\left(a-2\right)+\left(a-2\right)\right]\)
\(=\left(a+4\right)\left(a-2\right)\left(a+1\right)\)
---------------------------------
\(2x^2-5x+2\)
\(=2x^2-4x-x+2\)
\(=\left(2x^2-4x\right)-\left(x-2\right)\)
\(=2x\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-1\right)\)
-----------------------------------------
\(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x-4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x+2y-2\right)\)
-------------------------------------
\(a^2-1+4b-4b^2\)
\(=a^2-\left(1-4b+4b^2\right)\)
\(=a^2-\left(1-2b\right)^2\)
\(=\left(a-1+2b\right)\left(a+1-2b\right)\)
----------------------------------------
\(a^4+6a^2b+9b^2-1\)
\(=\left(a^4+6a^2b+9b^2\right)-1\)
\(=\left(a^2+3b\right)^2-1\)
\(=\left(a^2+3b-1\right)\left(a^2+3b+1\right)\)
---------------------------------
\(2x^3+16y^3\)
\(=2\left(x^3+8y^3\right)\)
\(=2\left(x+2y\right)\left(x^2-2xy+4y^2\right)\)
Lần sau ghi đề tách riêng từng câu ra nhé em. Ghi dính chùm vậy khó nhìn lắm. Sẽ ít ai giải cho em
Phân tích đa thức sau thành nhân tử
x9+1
8a3-12a2+6a-1
27a3-54a2b+36ab2-8b3
x9 + 1
= (x3)3 + 13
= (x3 + 1)(x6 - x3 + 1)
= (x + 1)(x2 - x + 1)(x6 - x3 +1)
8a3 - 12a2 + 6a - 1
= (2a)3 - 3(2a)21 + 3 . 2a . 12 - 1
= (2a - 1)3
27a3 - 54a2b + 36ab2 - 8b3
= (3a)3 - 3(3a)22b + 3 . 3a . (2b)2 - (2b)3
= (3a - 2b)3
Bài 1 : Phân tích các đa thức sau thành nhân tử
a) m3p + m2np - m2p2 - mnp2
b) ab( m2 + n2 ) + mn( a2 + b2 )
Bài 2 : Phân tích các đa thức sau thành nhân tử
a) (xy + ab )2 + ( ay - bx )2
b) m2( n - p ) + n2( p - m ) + p2?( m - n )
Bài 3 : Tìm y để giá trị của biểu thức 1 + 4y - y2 là lớn nhất
Bài 4 : Tìm x , biết : ( x3 - x2 ) - 4x2 + 8x - 4 = 0
Bài 5 : Phân tích đa thức sau thành nhân tử
A = ( a + b + c )3 - ( a + b - c )3 - ( b + c - a )3 - ( c + a - b )3
Bài 4:
Ta có: \(\left(x^3-x^2\right)-4x^2+8x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
phân tích đa thức sau thành nhân tử (a^2-b^2)+(a^3+b^3)-a^2b^2(a+b)
\(\left(a^2-b^2\right)+\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b\right)+\left(a+b\right)\left(a^2-ab+b^2\right)-a^2b^2\left(a+b\right)\)
\(=\left(a+b\right)\left(a-b+a^2+b^2-ab-a^2b^2\right)\)
\(=\left(a+b\right)\left[b^2\left(1-a^2\right)+a\left(1+a\right)-b.\left(1+a\right)\right]\)
\(=\left(a+b\right)\left(a+1\right)\left(b^2+a-b\right)\)