Biết a2 + b2 + c2 +14 = 2a + 4b + 6c . Vậy a + b + c=...
Please help me. Mai tớ thi violympic r ;-; À có bn nào thi r cho tớ xin đề vòng 17 vs nha ;-;
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho ba số thực dương a,b,c thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 b - 6 c = 10 và a + c=2 . Tính giá trị biểu thức P = 3a + 2b + c khi Q = a 2 + b 2 + c 2 - 14 a - 8 b + 18 c đạt giá trị lớn nhất.
A. 10
B. -10
C. 12
D. -12
Đáp án D
Bài toán trở thành: Tìm M nằm trên đường tròn giao tuyến của mặt cầu (S) và mặt phẳng (P) sao cho KM lớn nhất
Cho a,b,c thuộc R . CM Bất đẳng thức sau và cho biết dấu = xảy ra khi nào?
g) a2+b2+c2-4a-6b-2c+14 ≥0
h) a 2+4b2+3c2 +14> 2a+12b+6c
Mn làm giúp dùm e bài này với ạ.
a: \(\Leftrightarrow a^2-4a+4+b^2-6b+9+c^2-2c+1>=0\)
\(\Leftrightarrow\left(a-2\right)^2+\left(b-3\right)^2+\left(c-1\right)^2>=0\)
Dấu '=' xảy ra (a,b,c)=(2;3;1)
tìm a,b,c biết 4a-b2=4b-c2=4c-a2=1
Cho các số thực a, b, c thỏa mãn a 2 + b 2 + c 2 - 2 a - 4 b = 4 . Tính P = a + 2b + 3c khi biểu thức đạt giá trị lớn nhất
A. 7.
B. 3
C. -3.
D. -7.
biết
\(a^2+b^2+c^2+14=2a+4b+6c\)
vậy a+b+c=?
\(a^2+b^2+c^2+14-2a-4b-6c=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-2\right)^2+\left(c-3\right)^2=0\)
mà \(\left(a-1\right)^2\ge0;\left(b-2\right)^2\ge0;\left(c-3\right)^2\ge0\)nên
\(\left\{{}\begin{matrix}a-1=0\\b-2=0\\c-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=2\\c=3\end{matrix}\right.\)
4. Tìm giá trị lớn nhất của các biểu thức a. A = 5 – 8x – x2 b. B = 5 – x2 + 2x – 4y2 – 4y 5. a. Cho a2 + b2 + c2 = ab + bc + ca chứng minh rằng a = b = c b. Tìm a, b, c biết a2 – 2a + b2 + 4b + 4c2 – 4c + 6 = 0 6. Chứng minh rằng: a. x2 + xy + y2 + 1 > 0 với mọi x, y b. x2 + 4y2 + z2 – 2x – 6z + 8y + 15 > 0 Với mọi x, y, z 7. Chứng minh rằng: x2 + 5y2 + 2x – 4xy – 10y + 14 > 0 với mọi x, y.
Cho a,b,c∈Ra,b,c∈R và a2+b2+c2=21a2+b2+c2=21. Chứng minh rằng: 7≤|a−2b|+|b−2c|+|c−2a|≤√3997≤|a−2b|+|b−2c|+|c−2a|≤399 Ý tưởng: ( Nhưng không chắc chắn là đúng hướng :'> ) Dùng bất đẳng thức Cauchy-Schwarz để chứng minh bài toán -> x1+x2+...+xn≤|x1|+|x2|+...+|xn|≤√n(x21+x22+...+x2n)
Cho a,b,c e R t/m a2+b2+c2=a+2b+3c=14. Tính M= abc
\(14^2=\left(a+2b+3c\right)^2\le\left(1+4+9\right)\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2\ge14\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a;b;c\right)=\left(1;2;3\right)\)
\(\Rightarrow M=\)
Phân tích thành nhân tử :
a). a(b2 + c2 + bc) + b(c2 + a2 + ac) + c(a2 + b2 + ab);
b). (a + b + c) (ab + bc + ca) - abc
c*). a(a + 2b)3 - b(2a + b)3.
c: Ta có: \(a\left(a+2b\right)^3-b\left(2a+b\right)^3\)
\(=a^4+6a^3b+12a^2b^2+8ab^3-8a^3b-12a^2b^2-6ab^3-b^4\)
\(=a^4-2a^3b+2ab^3-b^4\)
\(=\left(a-b\right)\left(a+b\right)\left(a^2+b^2\right)-2ab\left(a^2-b^2\right)\)
\(=\left(a-b\right)^3\cdot\left(a+b\right)\)