Tìm x\(\in\) Z biet \(\left(x^2-15\right)\left(x^2-8\right)<0\)
\(Cho\text{ }x,y,z\text{ }\in R\text{ thỏa}\text{ }xyz=1.\text{Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|+\left|zx\right|\right)\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\text{Cho x,y,z }\in R\text{ thỏa mãn điều kiện }xyz=1\text{.Tìm Min:}\)
\(P=\left(\left|xy\right|+\left|yz\right|\left|zx\right|\right).\left[15\sqrt{x^2+y^2+z^2}-7\left(x+y-z\right)\right]+1\)
\(\left|xy\right|+\left|yz\right|+\left|zx\right|\)
Tìm\(x\in Z\)sao cho:
\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)
\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0
\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)
\(\left(z\right)\left(z+50\right)< 0\)
\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)
Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm
TH1:có 1 số âm
=>x2-20 < 0 <x2-15
=>15 < x2 <20
=> x2=16
=> x = +-4
TH2:có 3 số âm
=> x2-10 < 0 <x2-5
=> 5 < x2 <10
=> x2 =9
=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4
Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!
cho x,y,z>0 thỏa mãn \(\left(x^2+y^2\right)\left(y^2+z^2\right)\left(z^2+x^2\right)=8\)
Tìm giá trị nhỏ nhất của S=\(xyz\left(x+y+z\right)^3\)
(có thể dùng BDT \(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge\dfrac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\))
tks mn<3
Tìm x\(\in\)Z biết \(\left(x^2-15\right)\left(x^2-8\right)<0\)
Vì (x2-15)(x2-8) <0
=> x2-15 và x2-8 khác dấu
Mà x2-15 < x2-8
=> x2-15 < 0 và x2-8 > 0
Ta có: x2-15 < 0
=> x2 < 15 (1)
Ta có : x2-8 > 0
=> x2 > 8 (2)
Từ (1) và (2) => 8 < x2 < 15
=> x2 ∈ {9;10;11;12;13;14}
=> x =9
Tìm x\(\in Z\) biết(\(\left(x^2-15\right)\times\left(x^2-8\right)<0\)
Tìm \(x;y\in Z\)
1)\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\)
2)\(y\left(y+1\right)\left(y+2\right)\left(y+3\right)=x^2\)
Cho đa thức M(x)=\(x^2-2;N\left(x\right)=-x^3-x\)
Tìm \(x\in Z\) để \(\dfrac{N\left(x\right)}{M\left(x\right)}\in Z\)
\(\Leftrightarrow-x^3-x⋮x^2-2\)
\(\Leftrightarrow-x^3+2x-3x⋮x^2-2\)
\(\Leftrightarrow-3x^2⋮x^2-2\)
\(\Leftrightarrow x^2-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(x\in\left\{1;-1;2;-2\right\}\)
Tìm x \(\in\)Z biết :
\(|-2-x|=-15+\left(-37\right)-\left(37+15-8\right)\)
\(\left|-2-x\right|=-15+\left(-37\right)-\left(37+15-8\right)\)
\(\left|-2-x\right|=\left(-52\right)-\left(52-8\right)\)
\(\left|-2-x\right|=\left(-52\right)-44\)
\(\left|-2-x\right|=-96\)
Vì \(\left|a\right|\ge0\)mà \(-96< 0\)nên \(x\in\varnothing\)
Vậy x không có giá trị thỏa mãn đề bài
|-2 - x | = - 15 + (-37) - (37 + 15 - 8)
|-2 - x | = - 15 + (-37) - (52 - 8 )
|-2 - x | = - 15 + (-37) - 46
|-2 - x | = - 98
mà |-2 - x | > hoặc = 0 vói mọi x thuộc z
vậy x thuộc rỗng
mk ko bt viết kí hiệu