Những câu hỏi liên quan
GF
Xem chi tiết
NC
Xem chi tiết
AH
6 tháng 11 2023 lúc 18:54

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$A=\frac{1}{xz}+\frac{1}{xy}=\frac{1}{x}(\frac{1}{y}+\frac{1}{z})\geq \frac{1}{x}.\frac{4}{y+z}$

$=\frac{4}{x(y+z)}=\frac{4}{x(2-x)}$

Áp dụng BĐT AM-GM:

$x(2-x)\leq \left(\frac{x+2-x}{2}\right)^2=1$

$\Rightarrow A\geq \frac{4}{1}=4$
Vậy $A_{\min}=4$. Giá trị này đạt tại $x=1; y=z=\frac{1}{2}$

Bình luận (0)
LP
Xem chi tiết
TL
10 tháng 2 2023 lúc 19:23

không biết :))))

Bình luận (0)
HL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
Xem chi tiết
NC
22 tháng 11 2019 lúc 22:43

Câu hỏi của Hoàng Thái Dương - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
8 tháng 3 2021 lúc 21:06

undefined

Bình luận (1)
LN
Xem chi tiết
DH
3 tháng 11 2018 lúc 18:05

Đặt \(\left(x;y;z\right)=\left(a^3;b^3;c^3\right)\) Do \(xyz=1\Rightarrow abc=1\)

Ta có \(M=\frac{1}{a^3+b^3+1}+\frac{1}{b^3+c^3+1}+\frac{1}{a^3+c^3+1}\)

Cần chứng minh \(a^3+b^3\ge ab\left(a+b\right)\) \(BĐT\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\left(true\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b\right)+1}=\frac{abc}{ab\left(a+b+c\right)}=\frac{c}{a+b+c}\)

Tương tự cộng lại ra ĐPCM

Bình luận (0)