Những câu hỏi liên quan
NA
Xem chi tiết
NN
7 tháng 12 2023 lúc 16:29

Do (2023−�)2≥0 với mọi  nên:

3(�−3)2=16−(2023−�)2≤16<18

⇒(�−3)2<6

Mà (�−3)2≥0 và (�−3)2 là số chính phương với mọi  nguyên.

⇒(�−3)2=0 hoặc (�−3)2=4

Nếu (�−3)2=0 thì �=3.

Khi đó: 

Bình luận (0)
HG
Xem chi tiết
NT
17 tháng 12 2023 lúc 13:53

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

Bình luận (0)
Xem chi tiết

Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 17:57

\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)

Vậy \(\left(x;y\right)=\left(5;-2\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
28 tháng 2 2021 lúc 18:06

2. \(A=\left(x-2\right)^2+|y+3|+7\)

Ta có :

\(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\|y+3|\ge0\forall y\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+|y+3|\ge0\forall x;y\)

\(\Rightarrow\left(x-2\right)^2+|y+3|+7\ge7\forall x;y\)

\(\Rightarrow A\ge7\forall x;y\)

Dấu bằng xảy ra

\(\Leftrightarrow\hept{\begin{cases}\left(x-2\right)^2=0\\|y+3|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy GTNN của A là 7 khi \(\left(x;y\right)=\left(2;-3\right)\)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
KS
9 tháng 12 2018 lúc 9:29

x=3 ,y=2

Bình luận (0)
LA
Xem chi tiết
PL
17 tháng 1 2018 lúc 7:54

1/ a) \(A=\left(2x\right)^2-15\)

Vì \(\left(2x\right)^2\ge0\)\(\Rightarrow\)\(\left(2x\right)^2-15\ge-15\)

\(\Rightarrow A_{min}=-15\Rightarrow\left(2x\right)^2=0\Rightarrow2x=0\Rightarrow x=0\)

Vậy GTNN của A = -15 khi x = 0

Bình luận (0)
CT
Xem chi tiết
VA
Xem chi tiết
NT
16 tháng 4 2020 lúc 15:50

brabla

Bình luận (0)
 Khách vãng lai đã xóa
NT
16 tháng 4 2020 lúc 16:00

b) n mũ 2 + 2006 là hợp số

hai câu còn lại ko bt

Hok tốt

^_^

Bình luận (0)
 Khách vãng lai đã xóa
H24
16 tháng 4 2020 lúc 16:11

a, \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)

        \(=120+3^4.\text{​​}\text{​​}\text{​​}\text{​​}\left(3+3^2+3^3+3^4\right)+...+3^{96}.\left(3+3^2+3^3+3^4\right)\)

        \(=120+3^4.110+...+3^{96}.120\)  

         \(=120.\left(1+3^4+...+3^{96}\right)⋮120\)

\(\RightarrowĐPCM\)

Hok Tốt!

# mui #

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
HQ
Xem chi tiết