Những câu hỏi liên quan
NN
Xem chi tiết
LB
17 tháng 9 2017 lúc 21:36

Ta có:B = \(\dfrac{1.3}{2^2}.\dfrac{2.4}{3^2}.\dfrac{3.5}{4^2}......\dfrac{98.100}{99^2}\)

\(=\dfrac{1.2.3......98}{2.3.4......99}.\dfrac{3.4.5.....100}{2.3.4.....99}=\dfrac{1}{99}.\dfrac{100}{2}=\dfrac{100}{198}\)

Vậy B = \(\dfrac{100}{198}\)

Bình luận (2)
ND
Xem chi tiết
H24
9 tháng 4 2017 lúc 18:37

\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\)

\(\Rightarrow G=\dfrac{2}{3}.\dfrac{96}{505}\)

\(\Rightarrow G=\dfrac{64}{505}\)

Bình luận (0)
ND
9 tháng 4 2017 lúc 9:39

giải hộ với

Bình luận (0)
HL
9 tháng 4 2017 lúc 9:45

\(G=\dfrac{2}{5.8}+\dfrac{2}{8.11}+...+\dfrac{2}{95.98}+\dfrac{2}{98.101}\\ G=\dfrac{2}{3}.\left(\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{95.98}+\dfrac{3}{98.101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{95}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{1}{5}-\dfrac{1}{101}\right)\\ G=\dfrac{2}{3}.\left(\dfrac{101}{505}-\dfrac{5}{505}\right)\\ G=\dfrac{2}{3}.\dfrac{96}{505}\\ G=\dfrac{64}{505}\)

Bình luận (0)
VA
Xem chi tiết
MV
29 tháng 4 2017 lúc 10:33

\(B=\dfrac{2^2}{1\cdot3}+\dfrac{3^2}{2\cdot4}+\dfrac{4^2}{3\cdot5}+...+\dfrac{99^2}{98\cdot100}\\ =\dfrac{1\cdot3+1}{1\cdot3}+\dfrac{2\cdot4+1}{2\cdot4}+\dfrac{3\cdot5+1}{3\cdot5}+...+\dfrac{98\cdot100+1}{98\cdot100}\\ =\dfrac{1\cdot3}{1\cdot3}+\dfrac{1}{1\cdot3}+\dfrac{2\cdot4}{2\cdot4}+\dfrac{1}{2\cdot4}+\dfrac{3\cdot5}{3\cdot5}+\dfrac{1}{3\cdot5}+...+\dfrac{98\cdot100}{98\cdot100}+\dfrac{1}{98\cdot100}\\ =1+\dfrac{1}{1\cdot3}+1+\dfrac{1}{2\cdot4}+1+\dfrac{1}{3\cdot5}+...+1+\dfrac{1}{98\cdot100}\\ =\left(1+1+1+...+1\right)+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ =98+\left(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\right)\\ \)Gọi \(\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\) là A

\(A=\dfrac{1}{1\cdot3}+\dfrac{1}{2\cdot4}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{98\cdot100}\\ =\dfrac{1}{2}\cdot\left(\dfrac{2}{1\cdot3}+\dfrac{2}{2\cdot4}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{98\cdot100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{98}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{1}{1}+\dfrac{1}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{3}{2}-\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\left(\dfrac{295}{198}-\dfrac{1}{100}\right)\\ =\dfrac{1}{2}\cdot\dfrac{14651}{9900}=\dfrac{14651}{19800}\)

\(B=98+A=98+\dfrac{14651}{19800}=98\dfrac{14651}{19800}\)

Dễ thấy phần nguyên của B là 98

Vậy phần nguyên của B là 98

Bình luận (0)
TN
Xem chi tiết
IK
8 tháng 5 2022 lúc 21:47

\(\dfrac{4}{3}\times\dfrac{9}{8}\times\dfrac{16}{15}\times\dfrac{25}{24}=\dfrac{5}{3}\)

Bình luận (0)
MR
8 tháng 5 2022 lúc 21:49

`(2^2)/(1 . 3) . (3^2)/(2 . 4) . (4^2)/(3 . 5) . (5^2)/(4 . 6)`

`= 4/3 . 9/8 . 16/15 . 25/24 = 5/3`

Bình luận (0)
H24
8 tháng 5 2022 lúc 21:48

5/3

Bình luận (0)
HD
Xem chi tiết
KH
Xem chi tiết
NN
11 tháng 5 2018 lúc 14:39

sai đề bn ơi

54 là 51 mới đúng

Bình luận (0)
NN
11 tháng 5 2018 lúc 14:40

với lại lũy thừa tất cả phải là mũ 2

Bình luận (0)
NN
11 tháng 5 2018 lúc 14:46

\(\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{50^2}{49.51}\\ =\dfrac{\left(2.3.4.....50\right).\left(2.3.4....50\right)}{\left(1.2.3....49\right).\left(3.4.5.....51\right)}\\ =\dfrac{50.2}{51.1}\\ =1\dfrac{49}{51}\\ =\dfrac{100}{51}\)

Bình luận (0)
H24
Xem chi tiết
H24
5 tháng 4 2021 lúc 22:39

Trước hết ta chứng minh (a-1)(a+1) + 1 = a^2 (*)

Thật vậy VT = (a-1)(a+1)+1=(a-1)a + a-1 +1 = a^2-a+a=a^2 =VP 

Áp dụng (*) ta có:

\(A=\dfrac{1\cdot3+2}{2^2}+\dfrac{2\cdot4+2}{3^2}+...+\dfrac{2009\cdot2011+2}{2010^2}\\ =\dfrac{2^2+1}{2^2}+\dfrac{3^2+1}{3^2}+...+\dfrac{2010^2+1}{2010^2}=2009+\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2010^2}\\ < 2009+\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{2009\cdot2010}\\ =2009+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2009}-\dfrac{1}{2010}=2010-\dfrac{1}{2010}< 2020< 2011\)

Bình luận (0)
NT
Xem chi tiết
NV
Xem chi tiết