tìm a, b sao cho: x^3 + ax + b chia hết cho x^2 + 4x +3
tìm a, b sao cho: x^3 + ax + b chia hết cho x^2 + 4x +3
Lời giải:
Xét $f(x)=x^3+ax+b$
Vì $x^2+4x+3=(x+1)(x+3)$ nên để $f(x)\vdots x^2+4x+3$ thì $f(x)\vdots x+1$ và $f(x)\vdots x+3$
Theo định lý Bê-du thì điều trên xảy ra khi:
$f(-1)=f(-3)=0$
$\Leftrightarrow (-1)^3+a(-1)+b=(-3)^3+a(-3)+b=0$
$\Leftrightarrow -a+b=1$ và $-3a+b=27$
$\Rightarrow a=-13; b=-12$
Bài 1: Xác định a, b sao cho x3+ax+b chia hết cho (x+1) dư 7, chia cho (x-3) dư -5
Bài 2: Xác định a sao cho:
a) x3+ax2-4 chia hết cho x2+4x+4
b) 2x2+ax+1 chia hết cho x-3 dư 4
tìm a; b sao cho :
a) ( x^3 + ax^2 - 4 ) chia hết cho ( x^2 + 4x + 4 )
b) ( x^4 + ax^3 + bx - 1 ) chia hết cho ( x^2 - 1 )
mn làm giúp mk nha ! cảm ơn mn nhiều thật nhiều !!!
a) x3 + 127127 = x3 + (1313)3 = (x + 1313)(x2 – x . 1313+ (1313)2)
=(x + 1313)(x2 – 1313x + 1919)
b) (a + b)3 – (a - b)3
= [(a + b) – (a – b)][(a + b)2 + (a + b) . (a – b) + (a – b)2]
= (a + b – a + b)(a2 + 2ab + b2 + a2 – b2 + a2 – 2ab + b2)
= 2b . (3a3 + b2)
c) (a + b)3 + (a – b)3 = [(a + b) + (a – b)][(a + b)2 – (a + b)(a – b) + (a – b)2]
= (a + b + a – b)(a2 + 2ab + b2 – a2 +b2 + a2 – 2ab + b2]
= 2a . (a2 + 3b2)
d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3 . (2x)2 . y +3 . 2x . y + y3 = (2x + y)3
e) - x3 + 9x2 – 27x + 27 = 27 – 27x + 9x2 – x3 = 33 – 3 . 32 . x + 3 . 3 . x2 – x3 = (3 – x)3
Tìm a,b sao cho:f(x)=2x^4+ax^3+3x^2+4x+b chia hết cho (x-1)(x+2) với mọi x
Đa thức \(\left(x-1\right)\left(x+2\right)\)có nghiệm \(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy 1 và -2 là hai nghiệm của đa thức (x-1)(x+2)
Để đa thức \(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)chia hết cho (x-1)(x+2) thì 1 và -2 là cũng hai nghiệm của đa thức
\(f\left(x\right)=2x^4+ax^3+3x^2+4x+b\)
Nếu x = -1 thì \(f\left(-1\right)=2-a+3-4+b=0\)
\(\Leftrightarrow a-b=1\)(1)
Nếu x = 2 thì \(f\left(2\right)=32+8a+12+8+b=0\)
\(\Leftrightarrow52+8a+b=0\)
\(\Leftrightarrow8a+b=-52\)(2)
Lấy (1) + (2), ta được: \(9a=-51\Leftrightarrow a=\frac{-17}{3}\)
\(\Rightarrow b=\frac{-17}{3}-1=\frac{-20}{3}\)
Vậy \(a=\frac{-17}{3};b=\frac{-20}{3}\)
Tìm a,b sao cho
a, x^3+ax+b chia hết cho x^2+x-2
b, x^3+ax^2+2x+b chia hết cho x^2+x+1
( chia theo cột dọc ạ)
Tìm a sao cho biểu thức A chia hết cho B(tìm a sao cho A:B ∈ Z)
1)A=4x+a;B=2x+1
2)A=6x-a;B=x+1
3)A=x2-ax+3;B=x-3
4)A=x2-4x-6;B=x+a
Xác định hệ số a sao cho:
a) x^3 + ax^2 - 4 chia hết cho x^2 + 4x + 4
b) ax^5 + 5x^4 - 9 chia hết cho x - 1
Tìm số hữu tỷ a và b sao cho
a, 6x^4-7x^3+ax^2+3x+2 chia hết cho x^2-x+b.
b, x^4+ax^2+b chia hết cho x^2-x+1.
c, 2x^3-5x^2+x+a chia hết cho x^2-3x+2.
d, 5x^3+4x^2-6x-a chia 5x-1 dư -3
c: \(\Leftrightarrow2x^3-6x^2+4x+x^2-3x+2+a-2⋮x^2-3x+2\)
=>a-2=0
=>a=2
d: \(\dfrac{5x^3+4x^2-6x-a}{5x-1}=\dfrac{5x^3-x^2+5x^2-x-5x+1-a-1}{5x-1}\)
\(=x^2+x-1+\dfrac{-a-1}{5x-1}\)
Để dư bằng -3 thì -a-1=-3
=>a+1=3
=>a=2
tìm a,b sao cho đa thức x^3+4x^2+ax+b chia hết cho đa thức x^3+x-2