Những câu hỏi liên quan
CM
Xem chi tiết
WS
10 tháng 7 2021 lúc 20:00

 

Áp dụng định lý Pi-ta-go vào tam giác vuông ABH vuông tại H ta có: 

    AB2= BH2 + AH2  

<=> 152= 122+ AH2

<=> AH2= 152- 122= 225- 144= 81

<=> AH= 9 (cm)

 Tương tự ta có : Áp dụng định lý Pi-ta-go vào tam giác vuông ACH vuông tại H .             

        AC2= AH2+ HC2

<=> 412= 92+ HC2

<=> HC2= 412- 92= 1681- 81= 1600

<=>HC= 40 (cm)

 

 

 

 

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 3 2019 lúc 13:53

Bình luận (0)
PB
Xem chi tiết
CT
30 tháng 10 2019 lúc 10:22

Bình luận (0)
NT
Xem chi tiết
NQ
12 tháng 1 2018 lúc 22:05

Tam giác AHC vuông tại H nên : AC^2 = AH^2 + CH^2 = 12^2 + 16^2 = 400

=> AC = 20 (cm)

Tam giác AHB vuông tại H nên : AB^2 = AH^2 + BH^2

=> BH^2 = AB^2 - AH^2 = 13^2 - 12^2 = 25

=> BH = 5 (cm)

=> BC = BH + HC = 5 + 16 = 21 (cm)

Tk mk nha

Bình luận (0)
H24
12 tháng 1 2018 lúc 22:03

bài này ta sử dụng định lí Pytago là được mà 

Bình luận (0)
NL
Xem chi tiết
MN
Xem chi tiết
NT
16 tháng 2 2021 lúc 19:49

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+HC^2\)

\(\Leftrightarrow AC^2=12^2+16^2=400\)

\(\Leftrightarrow AC=\sqrt{400}=20cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=13^2-12^2=25\)

\(\Leftrightarrow BH=\sqrt{25}=5cm\)

Ta có: BH+CH=BC(H nằm giữa B và C)

\(\Leftrightarrow BC=5+16=21\left(cm\right)\)

Vậy: AB=20cm; BC=21cm

Bình luận (1)
SK
Xem chi tiết
TH
20 tháng 4 2017 lúc 16:12

Ta có:

AC2= AH2+HC2=122+162=144+156=400.

=> AC=20(cm )

BH2=AB2-AH2=132-122

=169 - 144 = 25 => BH=5(cm)

Do đó BC=BH+HC=5+16=21(cm)



Bình luận (0)
NT
22 tháng 4 2017 lúc 8:40


Ta có:

AC2= AH2+HC2=122+162=144+156=400.

=> AC=20(cm )

BH2=AB2-AH2=132-122

=169 - 144 = 25 => BH=5(cm)

Do đó BC=BH+HC=5+16=21(cm)


Bình luận (0)
LP
15 tháng 1 2019 lúc 17:58

Hỏi đáp Toán

Bình luận (0)
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)
NM
Xem chi tiết