Những câu hỏi liên quan
LV
Xem chi tiết
LB
5 tháng 12 2015 lúc 12:02

Số 40 nhé bạn. Nhớ tick mình đó.

Bình luận (0)
H24
8 tháng 12 2021 lúc 7:52

Vì n là số tự nhiên có 2 chữ số thì 10≤n≤9910≤n≤99

=>21≤2n+1≤19921≤2n+1≤199

Vì 2n+1 là số chính phương

=>2n+1=(16;25;36;499;64;81;100;121;169)

n=(12;24;40;60;84)

=>3n+1=(37;73;121;181;253)

Mà 3n+1 là số chính phương

=>3n+1=121

=>n=40

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
KD
8 tháng 8 2016 lúc 13:05

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ n ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

 Vậy n=40

Bình luận (0)
NA
8 tháng 8 2016 lúc 13:00

Do 2n+1 là số chính phương lẻ nên 2n+1 chia 8 dư 1,vậy n là số chẵn.
Vì 3n+1 là số chính phương lẻ nên 3n+1 chia 8 dư 1
3n8
n8              (1)
Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
n5                (2)
Từ (1) và (2)n40
Vậy n=40k thì ... 

Bình luận (0)
LN
Xem chi tiết
H24
17 tháng 2 2022 lúc 21:41

2n+1 là số chính phương lẻ 

=> 2n+1 chia 8 dư 1

=> 2n ⋮ 8 => n ⋮ 4

=> 3n+1 cũng là số chính phương lẻ

=> 3n+1 chia 8 dư 1 

=> 3n ⋮ 8

=> n ⋮ 8 (1)

 

Do 2n+1 và 3n+1 đều là số chính phương lẻ có tận cùng là 1;5;9.do đó khi chia cho 5 thì có số dư là 1;0;4
Mà (2n+1)+(3n+1)=5n+2 ,do đo 2n+1 và 3n+1 khi cho cho 5 đều dư 1
⟹n ⋮ 5(2)

Từ (1) và (2)⟹n⋮40

n là số tự nhiên có 2 chữ số =>  n = 40 (thoả mãn ) hoặc n = 80 ( loại do 2n+1 không là số chính phương)

 

Cách 2 đơn giản hơn:

 

10 ≤ n ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201
2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ n ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40

 

Bình luận (1)
TL
Xem chi tiết
NV
18 tháng 10 2015 lúc 14:30

10 ≤ ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201

2n+1 là số chính phương lẻ nên

2n+1∈ {25;49;81;121;169}

↔ ∈{12;24;40;60;84}

↔ 3n+1∈{37;73;121;181;253}

↔ n=40

Bình luận (0)
H24
18 tháng 10 2015 lúc 14:31

10 ≤ ≤ 99 ↔ 21 ≤ 2n+1 ≤ 201


2n+1 là số chính phương lẻ nên
2n+1∈ {25;49;81;121;169}
↔ ∈{12;24;40;60;84}
↔ 3n+1∈{37;73;121;181;253}
↔ n=40

Bình luận (0)
GM
Xem chi tiết
H24
19 tháng 1 2024 lúc 21:44

Gọi 2n+1=a2,3n+1=b2(a,b∈N,10≤n≤99)

10≤n≤99⇒21≤2n+1≤199

⇒21≤a2≤199

Mà 2n + 1 lẻ

⇒2n+1=a2∈{25;49;81;121;169}

⇒n∈{12;24;40;60;84}

⇒3n+1∈{37;73;121;181;253}

Mà 3n + 1 là số chính phương

⇒3n+1=121⇒n=40

Vậy n = 40 (tham khảo nha)

 

Bình luận (0)
GM
Xem chi tiết
TT
Xem chi tiết
TT
29 tháng 2 2016 lúc 15:20

giải giùm cái

Bình luận (0)
YS
29 tháng 2 2016 lúc 15:24

10≤n≤99↔21≤2n+1≤201

2n+1 là số chính phương lẻ nên

2n+1∈{25;49;81;121;169}

↔n∈{12;24;40;60;84}

↔3n+1∈{37;73;121;181;253}

↔n=40

|t|i|c|k| cho tui zới

Bình luận (0)
TT
Xem chi tiết
H24
22 tháng 3 2021 lúc 23:07

$2n+1$ và $3n+1$ là các số chính phương

$⇒\begin{cases}2n+1=a^2\\3n+1=b^2\end{cases}$ với $a;b∈N$

$⇒5n+2=a^2+b^2$ 

Lại có: một số chính phương chia 5 chỉ có số dư là $0;1$ hoặc $4$

Nên $a^2+b^2$ chỉ có thể $\equiv 0;1;4;2;3(mod 5)$

Mà $5n+2 \equiv 2(mod 5)$

$⇒\begin{cases}a^2 \equiv 1(mod 5)\\b^2 \equiv 1(mod 5)\end{cases}$

Nên $2n+1 \equiv 1 (mod 5)⇒2n \vdots 5$ Mà $(2;5)=1$

$⇒n \vdots 5$

Ta có: $2n+1=a^2⇒a^2$ lẻ

Mà số chính phương lẻ chia 4 chỉ có thể dư 1 nên
$2n+1 \equiv 1 (mod 4)$

Hay $2n \vdots 4$

$⇒n \vdots 2$

$⇒3n+1$ lẻ

Xét với $a=2k+1(k∈N)$ có $a^2=(2k+1)^2=4k^2+4k+1=4k(k+1)+1$

Mà $4k(k+1) \vdots 8$ nên $a^2 \vdots 1 (mod 8)$

nên ta có thể thấy số chính phương lẻ chia 8 dư 1

Mà $3n+1=b^2$ là số chính phương lẻ

$⇒3n+1 \equiv 1(mod 8)$

$⇒3n \vdots 8$

Mà $(3;8)=1$

Nên $n \vdots 8$

Lại có $n \vdots 5$

$(5;8)=1$

$⇒n \vdots 5.8=40$

Hay $n$ chia hết cho 40 mà $n$ có 2 chữ số

$⇒n=40$ hoặc $n=80$

với $n=80⇒$ Loại do thay vào ko t/m

$n=40$ thỏa mãn

Vậy $n=40$ thỏa mãn đề

Bình luận (0)
VD
Xem chi tiết
H9
1 tháng 3 2023 lúc 19:29

\(10\le n\le99\Leftrightarrow21\le2n+1\le201\)

\(2n+1\) là số chính phương lẻ nên

\(2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Leftrightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Leftrightarrow3n+1\in\left\{37;73;121;181;253\right\}\)

\(\Leftrightarrow n=40\)

Bình luận (0)