Cho HCN ABCD có :
2 đường chéo AC và BD ; mỗi đường chéo bằng 8cm
góc nhọn tạo bởi 2 đường chéo đó bằng 30 độ
Tính diện tích HCN ABCD.
cho hcn ABCD biết pt cạnh AB :x-2y+1=0, pt đường chéo BD: x-7y+14=0, đường chéo AC đi qua M(2;1). tìm tọa độ các đỉnh hcn
cho hcn ABCD biết pt cạnh AB :x-2y+1=0, pt đường chéo BD: x-7y+14=0, đường chéo AC đi qua M(2;1). tìm tọa độ các đỉnh hcn
Tọa độ B là:
x-2y+1=0và x-7y+14=0
=>x=7 và y=3
AB: x-2y+1=0
=>BC: 2x+y+c=0
Thay x=7 và y=3 vào BC, ta được:
c+2*7+3=0
=>c=-17
=>2x+y-17=0
A thuộc AB nên A(2a+1;a); C thuộc BC nen C(c;17-2c)(a<>3; c<>7)
Gọi I là giao của AC và BD
Tọa độ I là;
\(\left\{{}\begin{matrix}x=\dfrac{2a+1+c}{2}\\y=\dfrac{a+17-2c}{2}\end{matrix}\right.\)
I thuộc BD nên 3c-a=18
=>a=3c-18
=>A(6c-35; 3c-18)
vecto MA=(6c-37; 3c-19)
vecto MC=(c-2;16-2c)
M,A,C thẳng hàng nên (6c-37)/(c-2)=(3c-19)/16-2c
=>c=7(loại) hoặc c=6(nhận)
=>A(1;0); C(6;5); B(7;3); D(0;2)
cho tứ giác ABCD có đường chéo AC vuông góc với đường chéo BD biết diện tích tứ giác ABCD bằng 15m2 và AC=6m. tính BD.
Cho hình thang ABCD có BC//AD có 2 đường chéo AC và BD vuông góc với nhau Biết BC =3cm AD=17cm AC=12cm.Tính độ dài đường chéo BD và đường cao AH
Cho hình thang ABCD(AC//BD) có 2 đường chéo BD và AC vuông góc. Biết BD=15cm, AC=20cm
a) Tính SABCD
b) Tính chiều cao ABCD
cho tứ giác ABCD có 2 đường chéo AC và BD cắt nhau tại O.Chứng minh tổng hai đường chéo AC và BD lớn hơn tổng hai cạnh đối của tứ giác
Sử dụng tính chất tổng hai cạnh trong một tam giác thì lớn hơn cạnh còn lại cho các tam giác OAB, OBC, OCD và ODA.
Bài 1 : Cho hình thang ABCD có độ dài đáy AB bằng 5cm, CD 15cm, đường chéo DB 12cm, AC 16cm. Từ A kẻ đường thẳng song song với BD cắt đường thẳng CD tại E
a. Cm tam giác AEC vuông
b. Tính diện tích hình thang ABCD
Bài 2 : Cho hình chữ nhật ABCD. Qua A kẻ đường thẳng vuông góc đường chéo BD tại H. Biết rằng AB bằng 20cm, AH bằng 12cm. Tính chu vi HCN ABCD
Cho HCN ABCD, AB=8cm, BC=6cm. Gọi H là hình chiếu của A trên BD. O là giao điểm 2 đường chéo AC và BD. Qua O kẻ đuồng thẳng song song với AH cắt AD tại E và cắt AB tại I . Cm: IA.BE=IB.AE
Giúp em giải bài này vs:Cho hcn ABCD từ điểm P thuộc đường chéo AC ta dựng hcn AMPN (M thuộc AB,N thuộc AD).Chứng minh:
a BD song song MN
b BD và MN cắt nhau tại K nằm trên AC
Mình gợi ý câu b thôi, tại thấy câu a không có gì khó hết.
Gọi \(X,Y\) lần lượt là trung điểm \(MN,BD\). Tự CM \(A,X,Y,C\) thẳng hàng.
Cho \(XK\) cắt \(BD\) tại \(Y'\). Theo định lí Thales cho tam giác \(MXK,NXK\) CM được \(Y'\) là trung điểm \(BD\).
Tức là \(Y\) trùng với \(Y'\), tức là \(XY\) qua \(K\) hay \(A,K,C\) thẳng hàng.
Trần Quốc Đạt ! hình như hình bạn sai đáy