Tìm x:
(2x - 4,5) : 3/4 - 1/3 = 1
tìm x :(2x-4,5):3/4-1/3=1
`(2x-4,5):3/4-1/3=1`
`=>(2x-4,5):3/4=1+1/3`
`=>(2x-4,5):3/4=3/3+1/3`
`=>(2x-4,5):3/4=4/3`
`=>2x-4,5=4/3xx3/4`
`=>2x-4,5=1`
`=>2x=1+4,5`
`=>2x=5,5`
`=>x=2,75`
tìm x biết :
a, 1/2x - 3/4 = 14/9 .3/7
b, (4,5 -2x ) (-1 4/7 ) =11/14
( -1 4/7 là hỗn số nhà)
tìm x,biết
a, 1/12x-75%x=-1/2/3
b,(4,5-2x)(-1/4/7)=11/14
c,(-2x/5+1):(-5)=-1/25
tao là N nè kqua phần a ra 20/3, phần b là 2.5 còn phần c tao làm rồi nhưng không chắc
Tìm x, biết
a,(2x-4,5)x1 4/7=-11/14
b,|x/7|+6\24
c,60%x+2/3x+1/3.6 1/3
d,|2x-1/3|+5/6=1
tìm x: a) 7,5 . 1 3/4=6 2/5
b) (4,5-2x):3/4=1 1/3
để tớ viết lại câu a
7,5 . 1 3/4=6 2/5
Tìm x:
d) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)
e) \(\dfrac{x+3}{-15}=\dfrac{1}{3}\)
f) \(\left(4,5-2x\right).\left(-1\dfrac{4}{7}\right)=\dfrac{11}{14}\)
d: =>-x-5/6=7/12-4/12=3/12=1/4
=>-x=1/4+5/6=13/12
hay x=-13/12
e: =>x+3=-5
hay x=-8
f: =>4,5-2x=-1/2
=>2x=5
hay x=5/2
tìm x,y,z biết x,y TLN với 4,5 và x,z TLN với -1/4,-2/3 và 2x -y = 3z +1
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a)|-x+2/5|+1/2=3,5 b)21/5+3:|x/4-2/3|=6
c)7,5-3|5-2x|=-4,5 d)1/3-|5/4-2x|=1/4
e)21/5+3:|x/4-2/3|=6
a: Ta có: \(\left|\dfrac{2}{5}-x\right|+\dfrac{1}{2}=3.5\)
\(\Leftrightarrow\left|x-\dfrac{2}{5}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{2}{5}=3\\x-\dfrac{2}{5}=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{5}\\x=-\dfrac{13}{5}\end{matrix}\right.\)
b: Ta có: \(\dfrac{21}{5}+3:\left|\dfrac{x}{4}-\dfrac{2}{3}\right|=6\)
\(\Leftrightarrow3:\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=6-\dfrac{21}{5}=\dfrac{9}{5}\)
\(\Leftrightarrow\left|\dfrac{1}{4}x-\dfrac{2}{3}\right|=\dfrac{5}{3}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x-\dfrac{2}{3}=\dfrac{5}{3}\\\dfrac{1}{4}x-\dfrac{2}{3}=-\dfrac{5}{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{4}x=\dfrac{7}{3}\\\dfrac{1}{4}x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{28}{3}\\x=-4\end{matrix}\right.\)