Những câu hỏi liên quan
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 20:23

Tham khảo:

Bước 1: Đặt \(\overrightarrow u  = \overrightarrow {{F_1}}  + \;\overrightarrow {{F_2}} \). Ta xác định các điểm như hình dưới.

 

Dễ dàng xác định điểm C, là điểm thứ tư của hình bình hành ABCD. Do đó vecto \(\overrightarrow u \) chính là vecto \(\overrightarrow {AC} \)

Vì chất điểm A ở trang thái cân bằng nên \(\overrightarrow {{F_1}}  + \;\overrightarrow {{F_2}}  + \;\overrightarrow {{F_3}}  = \overrightarrow 0 \) hay \(\;\overrightarrow u  + \;\overrightarrow {{F_3}}  = \overrightarrow 0 \)

\( \Leftrightarrow \;\overrightarrow u \) và \(\;\overrightarrow {{F_3}} \) là hai vecto đối nhau.

\( \Leftrightarrow A\) là trung điểm của EC.

Bước 2:

Ta có: \(\left| {\overrightarrow {{F_1}} } \right| = AD = 20,\;\left| {\overrightarrow {{F_2}} } \right| = AB,\;\left| {\overrightarrow {{F_3}} } \right| = AC.\)

Do A, C, E thẳng hàng nên \(\widehat {CAB} = {180^o} - \widehat {EAB} = {60^o}\)

\(\begin{array}{l} \Rightarrow \widehat {CAD} = {90^o} - {60^o} = {30^o}\\ \Rightarrow \left\{ \begin{array}{l}AC = \frac{{AD}}{{\cos {{30}^o}}} = \frac{{40\sqrt 3 }}{3};\;\\AB = DC = AC.\sin {30^o} = \frac{{20\sqrt 3 }}{3}.\end{array} \right.\end{array}\)

Vậy \(\;\left| {\overrightarrow {{F_2}} } \right| = \frac{{20\sqrt 3 }}{3},\;\;\left| {\overrightarrow {{F_3}} } \right| = \frac{{40\sqrt 3 }}{3}.\)

Bình luận (0)
TD
Xem chi tiết
ND
28 tháng 1 2021 lúc 17:42

Bây giờ ta sẽ đi tìm tọa độ giao điểm của 3 đường thẳng trên

Với (d1) và (d2) cắt nhau tại điểm \(A\left(x_1;y_1\right)\) nên khi đó:
\(\hept{\begin{cases}y_1=3x_1-2\\y_1=-\frac{1}{3}x_1+\frac{4}{3}\end{cases}}\Rightarrow3x_1-2=-\frac{1}{3}x_1+\frac{4}{3}\Leftrightarrow\frac{10}{3}x_1=\frac{10}{3}\Rightarrow\hept{\begin{cases}x_1=1\\y_1=1\end{cases}}\)

Vậy \(A\left(1;1\right)\)

Tương tự gọi B,C là giao điểm của đường (d3) với (d2) , (d1

Khi đó ta dễ dàng tính được: \(B\left(4;0\right)\) ; \(C\left(2;4\right)\)

Áp dụng công thức tính khoảng cách giữa 2 điểm trong mặt phẳng ta có:
\(AB=\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}=\sqrt{10}\Rightarrow AB^2=10\)

\(AC=\sqrt{\left(1-2\right)^2+\left(1-4\right)^2}=\sqrt{10}\Rightarrow AC^2=10\)

\(BC=\sqrt{\left(4-2\right)^2+\left(0-4\right)^2}=\sqrt{20}\Rightarrow BC^2=20\)

Xét tam giác ABC có: \(\hept{\begin{cases}AB=AC\\AB^2+AC^2=BC^2\left(=20\right)\end{cases}}\)

=> Tam giác ABC vuông cân tại A

=> đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PD
9 tháng 2 2021 lúc 16:02

giao điểm của d1 với d2 là : y=3x-2

                                              y=-1/3x+4/3

                                           <=> 3x -2 =-1/3+4/3

                                                    y=3x-2

                                               <=> x=1

                                                       y=1

vaaky giao điểm của d1 và d2 có tọa độ A(1,1)

tương tự ta được giao điểm của: d2 với d3 có tọa độ B (4,0)

                                                       d3 với d1 có tọa độ C(2,4)

độ dài AB là\(\sqrt{\left(Xa-Xb\right)^2+\left(Ya+Yb\right)^2}\)=\(\sqrt{\left(1-4\right)^2+\left(1-0\right)^2}\)=\(\sqrt{10}\)

tương tư ta được AC= \(\sqrt{10}\)

=> AB=AC ; d1 vuông góc d2 vì 3.(-1/3)=-1

=> tam giác ABC VUÔNG CÂN

 

Bình luận (0)
 Khách vãng lai đã xóa
KD
7 tháng 5 2021 lúc 22:01

Ta có:d1=d2                                         <=>3x-2=-1

 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
18 tháng 1 2022 lúc 23:16

A

Bình luận (5)
NH
Xem chi tiết
PT
Xem chi tiết
NT
1 tháng 3 2022 lúc 15:28

\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)

\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)

\(=\dfrac{n+1}{5n+6}=VP\)

Bình luận (0)
TH
1 tháng 3 2022 lúc 15:35

undefined

Bình luận (0)
H24
Xem chi tiết
QL
Xem chi tiết
HM
24 tháng 9 2023 lúc 1:12

Ta có: \(\overrightarrow {{F_1}}  = \overrightarrow {OA} ,\;\overrightarrow {{F_2}}  = \overrightarrow {OB}= \overrightarrow {AC}  \)

Khi đó: Hợp lực \(\overrightarrow F \)  là \(\overrightarrow {OC}  = \overrightarrow {OA}  + \overrightarrow {OB} \).

Áp dụng định lí cosin cho tam giác OAC, ta có:

\(\begin{array}{*{20}{l}}
{\;\;\;{\mkern 1mu} {\kern 1pt} \;O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos A}\\
\begin{array}{l}
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} - 2.OA.AC.\cos ({180^o} - \alpha )\\
\Leftrightarrow O{C^2} = O{A^2} + A{C^2} + 2.OA.AC.\cos \alpha
\end{array}\\
{ \Leftrightarrow \left| {\vec F} \right| = \sqrt {{{\left| {\overrightarrow {{F_1}} } \right|}^2} + {{\left| {\overrightarrow {{F_2}} } \right|}^2} + 2.\left| {\overrightarrow {{F_1}} } \right|.\left| {\overrightarrow {{F_2}} } \right|.\cos \alpha } }
\end{array}\)

Bình luận (0)
VD
Xem chi tiết
AH
30 tháng 1 2021 lúc 21:50

Lời giải: 

$M\in d_1$ nên gọi tọa độ của $M$ là $(2a+3,a)$

Khoảng cách từ $M$ đến $(d_2)$ là:\(\frac{|2a+3+a+1|}{\sqrt{1^2+1^2}}=\frac{1}{\sqrt{2}}\Leftrightarrow |3a+4|=1\Leftrightarrow 3a+4=\pm 1\)

\(\Leftrightarrow a=-1; a=\frac{-5}{3}\)

Thay vào ta có tọa độ của điểm $M$

Bình luận (0)
MH
30 tháng 1 2021 lúc 21:54

Lấy \(M\in d_1\Rightarrow M\left(2y+3;y\right)\)

Ta có: \(d\left(M;d_2\right)=\dfrac{1}{\sqrt{2}}\Leftrightarrow\dfrac{\left|2y+3+y+1\right|}{\sqrt{1^2+1^2}}=\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\dfrac{\left|3y+4\right|}{\sqrt{2}}=\dfrac{1}{\sqrt{2}}\Leftrightarrow\left|3y+4\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}3y+4=1\\3y+4=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-\dfrac{5}{3}\end{matrix}\right.\)

\(y=1\Rightarrow M\left(5;1\right)\)

\(y=-\dfrac{5}{3}\Rightarrow M\left(-\dfrac{1}{3};-\dfrac{5}{3}\right)\)

Bình luận (1)
QL
Xem chi tiết
KT
24 tháng 9 2023 lúc 15:47

Tham khảo:

Dựng hình bình hành ABCD với hai cạnh là hai vectơ \(\overrightarrow {{F_1}} ,\overrightarrow {{F_2}} \) như hình vẽ

 

Ta có:

\(\overrightarrow {{F_1}}  + \overrightarrow {{F_2}}  = \overrightarrow {AD}  + \overrightarrow {AB}  = \overrightarrow {AC}  \Rightarrow \left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \left| {\overrightarrow {AC} } \right| = AC\)

Xét \(\Delta ABC\) ta có:

\(BC = AD = \left| {\overrightarrow {{F_1}} } \right| = 3\;,AB = \;\left| {\overrightarrow {{F_2}} } \right| = 2\;.\)

\(\widehat {ABC} = {180^o} - \widehat {BAD} = {180^o} - {120^o} = {60^o}\)

Theo định lí cosin ta có:

\(\begin{array}{l}A{C^2} = A{B^2} + B{C^2} - 2.AB.BC.\cos \widehat {ABC}\\ \Leftrightarrow A{C^2} = {2^2} + {3^2} - 2.2.3.\cos {60^o}\\ \Leftrightarrow A{C^2} = 7\\ \Leftrightarrow AC = \sqrt {7} \end{array}\)

Vậy \(\left| {\overrightarrow {{F_1}}  + \overrightarrow {{F_2}} } \right| = \sqrt {7} \)

Bình luận (0)