Những câu hỏi liên quan
H24
Xem chi tiết
PL
17 tháng 1 2016 lúc 8:30

tick đi rồi làm cho

 

Bình luận (0)
NS
Xem chi tiết
HP
31 tháng 1 2017 lúc 21:20

áp dụng : nếu x+y+z=0 thì x3+y3+z3=3xyz (có thể tự c/m)

trong bài thì x+y+z+3=0  hay (x+1)+(y+1)+(z+1)=0 

Bình luận (0)
KT
Xem chi tiết
VC
23 tháng 12 2017 lúc 23:49

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

Bình luận (0)
H24
Xem chi tiết
AH
17 tháng 7 2021 lúc 21:27

Lời giải:

$(x-y)^2\geq 0$ 

$\Leftrightarrow x^2+y^2\geq 2xy$

$\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2$
$\Leftrightarrow 2\geq (x+y)^2$

$\Leftrightarrow \sqrt{2}\geq x+y\geq -\sqrt{2}$

Ta có đpcm.

Bình luận (1)
AH
17 tháng 7 2021 lúc 21:33

Bạn mới bổ sung câu b thì làm như sau:

Áp dụng BĐT Cô-si cho các số dương:

$\frac{1}{x}+\frac{1}{y}\geq \frac{2}{\sqrt{xy}}$

$\frac{1}{y}+\frac{1}{z}\geq \frac{2}{\sqrt{yz}}$

$\frac{1}{z}+\frac{1}{x}\geq \frac{2}{\sqrt{zx}}$

Cộng theo vế và thu gọn:

$\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}$

Dấu "=" xảy ra khi $x=y=z$

 

Bình luận (0)
QH
Xem chi tiết
ML
9 tháng 8 2016 lúc 21:40

\(\sqrt{z}=\sqrt{x}+\sqrt{y}\Rightarrow z=x+y+2\sqrt{xy}\Rightarrow x+y-z=-2\sqrt{xy}\)

\(\sqrt{y}=\sqrt{z}-\sqrt{x}\Rightarrow y=x+z-2\sqrt{zx}\Rightarrow z+x-y=2\sqrt{zx}\)

\(\sqrt{x}=\sqrt{z}-\sqrt{y}\Rightarrow x=y+z-2\sqrt{yz}\Rightarrow y+z-x=2\sqrt{yz}\)

\(\frac{1}{y+z-x}+\frac{1}{z+x-y}+\frac{1}{x+y-z}=\frac{1}{2}\left(\frac{1}{\sqrt{zx}}+\frac{1}{\sqrt{yz}}-\frac{1}{\sqrt{xy}}\right)\)

\(=\frac{1}{2}.\frac{\sqrt{x}+\sqrt{y}-\sqrt{z}}{\sqrt{xyz}}=0\)

Bình luận (0)
NN
Xem chi tiết
ZZ
13 tháng 11 2019 lúc 21:59

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Nếu 

\(x=-y\Rightarrow\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}}-\frac{1}{x^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

\(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{x^{2019}-x^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

Tương tự các TH còn lại nha!

P/S:Có 1 bài chặt hơn ntnày:

Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
AC
17 tháng 8 2019 lúc 10:07

Đặt x+1=a,y+1=b,z+1=c

Theo bài ra ta có:

A^3+b^3+c^3=3abc

hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0

Hay (a+b)^3+c^3-3ab(a+b+c)=0

Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0

Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)

Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)

Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0

Vậy (1) đúng. Đề bài được cm

Bình luận (1)
NC
Xem chi tiết
CN
Xem chi tiết