Violympic toán 8

HL

chứng minh nếu x+y+z=-3 thì: (x+1)^3+(y+1^3)+(z+1)^3=3(x+1)(y+1)(z+1)

AC
17 tháng 8 2019 lúc 10:07

Đặt x+1=a,y+1=b,z+1=c

Theo bài ra ta có:

A^3+b^3+c^3=3abc

hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0

Hay (a+b)^3+c^3-3ab(a+b+c)=0

Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0

Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)

Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)

Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0

Vậy (1) đúng. Đề bài được cm

Bình luận (1)

Các câu hỏi tương tự
TH
Xem chi tiết
HN
Xem chi tiết
NU
Xem chi tiết
NL
Xem chi tiết
TB
Xem chi tiết
BB
Xem chi tiết
DQ
Xem chi tiết
DD
Xem chi tiết
H24
Xem chi tiết