Đường tròn (A ; 4cm) có đường kính là:
A. 4cm B.4cm2 C. 8 cm D. 8 cm2
.a)Vẽ đường tròn (O;2cm)
b)Lấy điểm A bất kì trên đường tròn(O;2cm) vẽ đường tròn (A;2cm) đường tròn nay cắt đường tròn tâm O ở trên 2 điểm C,D
c)Vẽ đường tròn (C;2cm)
d)Chứng tỏ rằng đường tròn (C;2cm) đi qua 2 điểm O,A
vẽ đường tròn tâm O, bán kính 2cm. Lấy điểm A trên đường tròn ấy. Vẽ đường tròn tâm O bán kính 2cm. Hai đường tròn trên cắt nhau tại C và D. Vẽ đường tròn tâm C, bán kính 2cm
a) vì sao đường tròn (A;2cm) đi qua O
b) vì sao đường tròn (C;2cm) đi qua O,A
a. vì AO =2cm nên đường tròn (A,2cm) đi qua O
b, vì CO=CA=2cm nên đường tròn (C,2cm) đi qua A và O
Cho đường tròn (O) đường kính AB. Vẽ đường tròn tâm A cắt đường tròn (O) ở C và D . kẻ dây BN của đường tròn (O), cắt đường tròn A tại điểm E ở bên trong đường tròn (O). Chứng minh rằng
a) góc CEN = góc EDN
b) NE^2 = NC. ND
Cho đường tròn (O) đường kính AB. Vẽ đường tròn tâm A cắt đường tròn (O) ở C và D . kẻ dây BN của đường tròn (O), cắt đường tròn A tại điểm E ở bên trong đường tròn (O). Chứng minh rằng
a) góc CEN = góc EDN
b) NE^2 = NC. ND
hon ma bay ma cung biet dua cau hoi day
Cho đường thẳng a và điểm O cách a là 3cm. Đường thẳng a có vị trí như thế nào so với đường tròn (O; 6cm)?
A. Đường thẳng a tiếp xúc với đường tròn (O; 6cm)
B. Đường thẳng a cắt đường tròn (O; 6cm)
C. Đường thẳng a là đường kính của đường tròn (O; 6cm)
D. Đường thẳng a không giao nhau với đường tròn (O; 6cm)
cho đường tròn (O) đường tròn AB. Vẽ một đường tròn tâm A có bán kính tùy ý cắt đường tròn (O) tại C và D. Qua B vẽ một đường thẳng cắt đường tròn tâm A tại M (điểm M nằm trong đường tròn(O)) và cắt đường tròn (O) tại N.
Chứng minh:MN^2=CN.ND
2.a)Vẽ đường tròn (O;2cm)
b)Lấy điểm A bất kì trên đường tròn(O;2cm) vẽ đường tròn (A;2cm) đường tròn nay cắt đường tròn tâm O ở trên 2 điểm C,D
c)Vẽ đường tròn (C;2cm)
d)Chứng tỏ rằng đường tròn (C;2cm) đi qua 2 điểm O,A
Mọi ng giúp mk nhé .
cho đường tròn o đường kính ab . vẽ đường tròn tâm a cắt đường tròn o tại c và d. kẻ dây bn của đường tròn cắt (a) tại e nằm trong đường tròn. chứng minh rằng góc cen=góc edn, ne2=nc.nd
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>CB\(\perp\)CA tại C
=>CB là tiếp tuyến của (A;AC)
Xét (A;AC) có
\(\widehat{BCE}\) là góc tạo bởi tiếp tuyến CB và dây cung CE)
\(\widehat{CDE}\) là góc nội tiếp chắn cung CE
Do đó: \(\widehat{BCE}=\widehat{CDE}\)
Xét (O) có
\(\widehat{CBE}\) là góc nội tiếp chắn cung CN
\(\widehat{CDN}\) là góc nội tiếp chắn cung CN
Do đó: \(\widehat{CBE}=\widehat{CDN}\)
mà \(\widehat{BCE}=\widehat{CDE}\)
nên \(\widehat{CBE}+\widehat{BCE}=\widehat{CDN}+\widehat{CDE}=\widehat{NDE}\left(1\right)\)
Xét ΔCEB có \(\widehat{CEN}\) là góc ngoài tại đỉnh E
nên \(\widehat{CEN}=\widehat{CBE}+\widehat{BCE}\left(2\right)\)
Từ(1) và (2) suy ra \(\widehat{CEN}=\widehat{NDE}\)
AC=AD
=>A nằm trên đường trung trực của CD(3)
OC=OD
=>O nằm trên đường trung trực của CD(4)
Từ (3) và (4) suy ra OA là đường trung trực của CD
=>BA là đường trung trực của CD
=>\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Xét (O) có
\(\widehat{BNC}\) là góc nội tiếp chắn cung BC
\(\widehat{BND}\) là góc nội tiếp chắn cung BD
\(sđ\stackrel\frown{BC}=sđ\stackrel\frown{BD}\)
Do đó: \(\widehat{BNC}=\widehat{BND}\)
Xét ΔCEN và ΔEDN có
\(\widehat{CEN}=\widehat{EDN}\)
\(\widehat{CNE}=\widehat{END}\)
Do đó: ΔCEN đồng dạng với ΔEDN
=>\(\dfrac{NC}{NE}=\dfrac{NE}{ND}\)
=>\(NE^2=NC\cdot ND\)
Cho tam giác ABC vuông tại A; đường cao AH. Vẽ đường tròn (A; AH). Gọi HD là đường kính của đường tròn đó. Tiếp tuyến của đường tròn D cắt CA ở E.
a. CMR BE tiếp xúc với đường tròn (A) tại một điểm gọi là I và IA là tiếp tuyến của đường tròn đường kính BC.
b. EA cắt đường tròn (A) tại T và S(ET<ES) và cắt DI tại N. CM T là tâm đường tròn nội tiếp của tam giác EDI và TN.SE=TE.SN.
c/ Đường thẳng vuông góc với ED tại E cắt đường thẳng AI tại M. CM AE2=2AI.AM
mn giúp e với ạ, e đang cần gấp