Câu 16. (TH) (1,0 điểm) Tìm $x$, biết:
a) $25 + x = 11$.
b) $3x = 3^5$.
Câu 2. (1,0 điểm) Tìm biết:
a) 3x - 3 = 2( -1 + x)
b) x2 - 25 + ( x - 5 )2 = 0
b: \(\Leftrightarrow\left(x-5\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-6\end{matrix}\right.\)
Câu 10 (4,0 điểm). Tìm giá trị của x:
a) – (x + 84) + 214 = – 16 b) 2x – 15 = 40 – ( 3x + 10)
c) |– x– 2| – 5 = 3 d) (x – 2)(x 2 + 1) = 0
Câu 11 (0,75 điểm).
Chứng minh đẳng thức: – (– a + b + c) + (b + c – 1) = (b –c + 6) – (7 – a + b) + c .
Câu 12 (1,0 điểm).
a) Tìm x, y thuộc Z biết: (x – 2)(2y + 3) = 5 ;
b) Tìm n thuộc Z biết n + 3 là bội của n 2 – 7 .
bạn làm đúng rồi nhé
chúc bạn học tốt@
CÂU 10:
a, -x - 84 + 214 = -16 b, 2x -15 = 40 - ( 3x +10 )
x = - ( -16 -214 + 84 ) 2x + 3x = 40 -10 +15
x = 16 + 214 - 84 5x = 45
x = 146 x = 9
c, \(|-x-2|-5=3\) d, ( x - 2)(2x + 1) = 0
\(|-x-2|=8\) => x - 2 = 0 hoặc 2x + 1 = 0
=> - x - 2 = 8 hoặc x + 2 = 8 \(\orbr{\begin{cases}x-2=0\\2x+1=0\end{cases}=>}\orbr{\begin{cases}x=2\\x=-\frac{1}{2}\end{cases}}\)
\(\orbr{\begin{cases}-x-2=8\\x+2=8\end{cases}=>\orbr{\begin{cases}x=-10\\x=6\end{cases}}}\)
CÂU 11:
Ta có : VT = - ( - a + b + c ) + ( b + c -1 ) = a - b - c + b + c - 1 = a - 1
VP = ( b - c + 6 ) - ( 7 - a + b ) + c = b - c + 6 - 7 + a - b + c = a - 1
=> VT = VP hay - ( -a + b +c ) + ( b + c -1 ) = ( b - c + 6 ) - ( 7 - a + b ) + c
Câu 14: (2,0 điểm) Phân tích đa thức sau thành nhân tử a) c) x2 + 25 – 10xd ) x3 – 8y3 Câu 15: (1,0 điểm) Tìm x, biết a) 3x.(x-1) + x-1=0 b) x2 - 6x = 0 Câu 16: (2,0 điểm) Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E ,F lần lượt là hình chiếu của H lên AB và AC. a. So sánh AH và EF b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm. Câu 17: (1,0 điểm) Cho hình thang ABCD (AB// CD) có O là giao điểm 2 đường chéo. Qua O kẻ đường thẳng song song với AB cắt AD và BC lần lượt tại E và H. Chứng minh OE= OH.
Câu 17:
Xét ΔADC có OE//DC
nên \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)
Xét ΔBDC có OH//DC
nên \(\dfrac{OH}{DC}=\dfrac{BO}{BD}\left(2\right)\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB đồng dạng với ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OE}{DC}=\dfrac{OH}{DC}\)
=>OE=OH
Câu 15:
a: \(3x\left(x-1\right)+x-1=0\)
=>\(3x\left(x-1\right)+\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b: \(x^2-6x=0\)
=>\(x\cdot x-x\cdot6=0\)
=>x(x-6)=0
=>\(\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Câu 14 (1,0 điểm): Thực hiện phép tính: 6.2^2-36:3°2 ,b:19.48+52.19-400 a) Câu 15 (1,0 điểm). Tìm số nguyên x, biết: a) 3x-2=19 b) 19.48 +52.19-400 b) 132 +2.(x-4)=46
Câu 14:
a. $6.2^2-36:3^2=6.4-36:9=24-4=20$
b. $19.48+52.19-400=19(48+52)-400=19.100-400=1900-400=1500$
Câu 15: (1,0 điểm) Tìm x, biết
a) 3x.(x-1) + x-1=0 b) x2 - 6x = 0
a, 3\(x\).(\(x\) - 1) + \(x\) - 1 = 0
(\(x\) - 1).(3\(x\) + 1) = 0
\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
b, \(x^2\) - 6\(x\) = 0
\(x\).(\(x\) - 6) = 0
\(\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
Câu 2 (1,0 điểm). Tìm x biết.
a) b)
Câu 3 (1,0 điểm). Cho biểu thức ; với
a) Rút gọn biểu thức P .
b) Tìm điều kiện của x để P > 0
Câu 2:
\(a,ĐK:x\ge-3\\ PT\Leftrightarrow6\sqrt{x+2}-3\sqrt{x+2}-\sqrt{x+3}=2\\ \Leftrightarrow2\sqrt{x+2}=2\\ \Leftrightarrow\sqrt{x+2}=1\\ \Leftrightarrow x+2=1\\ \Leftrightarrow x=-1\left(tm\right)\\ b,\Leftrightarrow\sqrt{\left(2x-3\right)^2}=2017\Leftrightarrow\left|2x-3\right|=2017\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=2017\\3-2x=2017\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1010\\x=-1007\end{matrix}\right.\)
Câu 3:
\(a,P=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{-3}{\sqrt{x}+3}\\ b,P=\dfrac{-3}{\sqrt{x}+3}< 0,\forall x\left(-3< 0;\sqrt{x}+3>0\right)\\ \Leftrightarrow x\in\varnothing\)
tìm x biết
a) ( x^2 -4).(x+3/5)=0
b) 2/3x - 3/2 .x = 5/12
c) I x-1/6I - 6/16 = 25%
d) (4,5-2x).28/7 = 11/4
Giúp em với ạ
a. (x2 - 4).(x+3/5) = 0
TH1: x2 - 4 = 0
x2 = 4
x2 = 22
-22
=> x = 2
-2
Vậy x \(\in\){-2;2}
Tìm x biết
a) x − 1 6 − 6 16 = 25 %
b) 3 x − 1 − 1 2 x + 5 = 0
Tìm số nguyên x, biết:
a) (x-3) + 11 = -25
b) 5 - (x-1) =12 -16
c) (x-14) + (-22) -6 -12
d) (-15) - (15-x) = -6 + (-8)