Những câu hỏi liên quan
CH
Xem chi tiết
NN
5 tháng 4 2020 lúc 16:29

\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)

\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)

\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\) 

\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)

\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)

\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)

\(\Rightarrow B=4\)

Bình luận (0)
 Khách vãng lai đã xóa
GC
Xem chi tiết
NT
20 tháng 12 2020 lúc 13:07

Sửa đề: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)

Ta có: \(A=\left(\dfrac{x+y}{2x-2y}-\dfrac{x-y}{2x+2y}-\dfrac{2y^2}{y^2-x^2}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{x+y}{2\left(x-y\right)}-\dfrac{x-y}{2\left(x+y\right)}+\dfrac{2y^2}{\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{\left(x+y\right)^2}{2\left(x-y\right)\left(x+y\right)}-\dfrac{\left(x-y\right)^2}{2\left(x+y\right)\left(x-y\right)}+\dfrac{4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\left(\dfrac{x^2+2xy+y^2-x^2+2xy-y^2+4y^2}{2\left(x-y\right)\left(x+y\right)}\right):\dfrac{2y}{x-y}\)

\(=\dfrac{4y^2+4xy}{2\left(x-y\right)\left(x+y\right)}:\dfrac{2y}{x-y}\)

\(=\dfrac{4y\left(y+x\right)}{2\left(x-y\right)\left(y+x\right)}\cdot\dfrac{x-y}{2y}\)

\(=1\)

Bình luận (0)
HN
Xem chi tiết
LH
19 tháng 6 2017 lúc 18:50

\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3\)( hằng đẳng thức số 6+7 )

\(=\left(x^3+x^3\right)+\left(y^3-y^3\right)-2x^3\)

\(=2x^3-2x^3+0=0+0=0\)

vậy giá trị của biểu thức không phụ thuộc vào biến x, y.

Bình luận (0)
NN
Xem chi tiết
DN
25 tháng 12 2016 lúc 16:40

\(=\frac{y}{x-y}-\frac{x\left(x^2-y^2\right)}{x^2+y^2}.\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{\left(x-y\right)\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\left[\frac{x\left(x +y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\frac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=\frac{-\left(x-y\right)}{x-y}=-1\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x và y

Bình luận (1)
LH
25 tháng 12 2016 lúc 20:18

cm ko phụ thuộc vào biến dễ mà, chỉ càn tính cái đó sao cho nó ra 1 hệ số thì ok thôi, ko phụ thuộc nghĩa là bạn cm rằng vs mọi giá trị biến thì khi tính xong nó chỉ ra 1 hằng số

Bình luận (3)
LN
Xem chi tiết
H24
22 tháng 12 2016 lúc 9:48

Giao luu:

\(a=\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)=\left(\frac{x\left(x+y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right)=\left(\frac{x^2+y^2}{\left(x-y\right)^2\left(x+y\right)}\right)\)

\(b=\frac{x^3-xy^2}{\left(x^2+y^2\right)}=\frac{x\left(x^2-y^2\right)}{x^2+y^2}=\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\)

\(c=\frac{y}{x-y}\)

\(P=c-ab\)

Điều kiện tồn tại P: \(!x!-!y!\ne0\)

\(P=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=-\frac{x-y}{x-y}=-1\)

Bình luận (0)
NV
Xem chi tiết
AM
11 tháng 7 2018 lúc 9:56

\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3\)

\(=2x^3-2x^3\)

\(=0\)

VẬY BIỂU THỨC TRÊN KO PHỤ THUỘC VÀO BIẾN X,Y

Bình luận (0)
ND
11 tháng 7 2018 lúc 9:53

\(\left(x+y\right)\left(x^2-xy+y^2\right)+\left(x-y\right)\left(x^2+xy+y^2\right)-2x^3\)

\(=x^3+y^3+x^3-y^3-2x^3=0\)=> DPCM.

Bình luận (0)
TT
Xem chi tiết
HP
19 tháng 9 2021 lúc 22:07

a. (2x2 - 4x)\(\left(x-\dfrac{1}{2}\right)\)

= 2x3 - x2 - 4x2 + 2

= 2x3 - 5x2 + 2

b. (x2 - 2x + 1)(x - 1)

= (x - 1)2(x - 1)

= (x - 1)3

c. 3(y - x)(y2 + xy + x2)

= 3(y3 - x3)

= 3y3 - 3x3

d. (x - 1)(x + 1)(x - 2)

= (x2 - 1)(x - 2)

= x3 - 2x2 - x + 2x

= x3 - 2x2 + x 

= x3 - x2 - x2 + x

= x2(x - 1) - x(x - 1)

= (x2 - x)(x - 1)

= x(x - 1)(x - 1)

= x(x - 1)2

Bình luận (0)
NV
Xem chi tiết
ND
16 tháng 10 2016 lúc 20:21

chỉ cần nhân ra là ok 

đơn giãn mà 

Bình luận (0)
NV
16 tháng 10 2016 lúc 20:24

giải hộ mink vs, mink k hỉu lm

Bình luận (0)
HN
Xem chi tiết