Ôn tập toán 8

NN

Chứng minh biểu thức sau ko phụ thuộc vào biến x và y

\(\frac{y}{x-y}-\frac{x^3-xy^2}{x^2+y^2}.\left(\frac{x}{\left(x-y\right)^2}-\frac{y}{x^2-y^2}\right)\)

DN
25 tháng 12 2016 lúc 16:40

\(=\frac{y}{x-y}-\frac{x\left(x^2-y^2\right)}{x^2+y^2}.\left[\frac{x}{\left(x-y\right)^2}-\frac{y}{\left(x-y\right)\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\left[\frac{x\left(x +y\right)-y\left(x-y\right)}{\left(x-y\right)^2\left(x+y\right)}\right]\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}.\frac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}{\left(x^2+y^2\right)\left(x-y\right)^2\left(x+y\right)}\)

\(=\frac{y}{x-y}-\frac{x}{x-y}=\frac{y-x}{x-y}=\frac{-\left(x-y\right)}{x-y}=-1\)

Vậy giá trị của biểu thức không phụ thuộc vào biến x và y

Bình luận (1)
LH
25 tháng 12 2016 lúc 20:18

cm ko phụ thuộc vào biến dễ mà, chỉ càn tính cái đó sao cho nó ra 1 hệ số thì ok thôi, ko phụ thuộc nghĩa là bạn cm rằng vs mọi giá trị biến thì khi tính xong nó chỉ ra 1 hằng số

Bình luận (3)

Các câu hỏi tương tự
DT
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
NL
Xem chi tiết
TV
Xem chi tiết
DN
Xem chi tiết