Những câu hỏi liên quan
NA
Xem chi tiết
H24
Xem chi tiết
NL
14 tháng 12 2020 lúc 22:39

1.

Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)

Pt trở thành:

\(4t=t^2-5+2m-1\)

\(\Leftrightarrow t^2-4t+2m-6=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:44

2.

Để pt đã cho có 2 nghiệm:

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)

Khi đó:

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)

\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)

Bình luận (0)
NL
14 tháng 12 2020 lúc 22:55

3.

Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC

\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)

\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)

\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)

Mặt khác:

\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)

\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)

(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)

Bình luận (0)
HA
Xem chi tiết
PA
6 tháng 3 2016 lúc 11:12

pt<=> \(2x\sqrt{3-2x}=6x^2-12x+8\)

 <=>\(6x^2-12x+8-2x\sqrt{3-2x}=0\)

<=> \(x^2-2x\sqrt{3-2x}+3-2x+5x^2-10x+5=0\)

<=> \(\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)

 đến đây cậu tự giải nha 

Bình luận (0)
HA
6 tháng 3 2016 lúc 11:14

okie okie ^^ camon cậu Tuấn Anh ^^

Bình luận (0)
NH
Xem chi tiết
TA
7 tháng 8 2017 lúc 11:11

Lập phương 2 vế lên bn

Bình luận (0)
NH
7 tháng 8 2017 lúc 14:28

Giải dùm tui đi bạn

Bình luận (0)
TN
7 tháng 8 2017 lúc 22:24

\(\sqrt[3]{2x-3}+\sqrt[3]{x-2}=1\)

\(pt\Leftrightarrow\sqrt[3]{2x-3}-1+\sqrt[3]{x-2}=0\)

\(\Leftrightarrow\frac{2x-3-1}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\sqrt[3]{x-2}=0\)

\(\Leftrightarrow\frac{2\left(x-2\right)}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{x-2}{\sqrt[3]{\left(x-2\right)^2}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(\frac{2}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{1}{\sqrt[3]{\left(x-2\right)^2}}\right)=0\)

Dễ thấY :\(\frac{2}{\sqrt[3]{\left(2x-3\right)^2}+\sqrt[3]{2x-3}+1}+\frac{1}{\sqrt[3]{\left(x-2\right)^2}}>0\)

\(\Rightarrow x-2=0\Rightarrow x=2\). Tổng lập phương các nghiệm là \(2^3=8\)

Bình luận (0)
MH
Xem chi tiết
MH
17 tháng 1 2017 lúc 17:49

ta có (2x+1)(x-1)2(2x+3)=(4x2+8x+3)(x2+2x+1)=18

đặt x2+2x+1=a ta có (4a-1)a=18

giải hệ trên ta được 2 nghiệm x=0,5 và x=-2,5 

đến đay các ban tự giai tiếp nhé

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 2 2019 lúc 5:37

Bình luận (0)
DT
Xem chi tiết
LN
Xem chi tiết
TN
19 tháng 3 2017 lúc 22:09

\(\sqrt{9x^2+33x+28}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{12x^2+19x-21}\)

\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}+5\sqrt{4x-3}=5\sqrt{3x+4}+\sqrt{\left(3x+7\right)\left(4x-3\right)}\)

\(\Leftrightarrow\sqrt{\left(3x+4\right)\left(3x+7\right)}-5\sqrt{3x+4}=\sqrt{\left(3x+7\right)\left(4x-3\right)}-5\sqrt{4x-3}\)

\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)=\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)\)

\(\Leftrightarrow\sqrt{3x+4}\left(\sqrt{3x+7}-5\right)-\sqrt{4x-3}\left(\sqrt{3x+7}-5\right)=0\)

\(\Leftrightarrow\left(\sqrt{3x+7}-5\right)\left(\sqrt{3x+4}-\sqrt{4x-3}\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{3x+7}=5\\\sqrt{3x+4}=\sqrt{4x-3}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}3x+7=25\\3x+4=4x-3\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=7\end{cases}}\) (thỏa mãn). Suy ra tổng các nghiệm của pt là \(6+7=13\)

Bình luận (0)
VK
Xem chi tiết