Những câu hỏi liên quan
PB
Xem chi tiết
CT
21 tháng 6 2017 lúc 5:42

f(x) = (3x2 – 4x)(2x2 – x – 1)

+ Tam thức 3x2 – 4x có hai nghiệm x = 0 và x = 4/3, hệ số a = 3 > 0.

Do đó 3x2 – 4x mang dấu + khi x < 0 hoặc x > 4/3 và mang dấu – khi 0 < x < 4/3.

+ Tam thức 2x2 – x – 1 có hai nghiệm x = –1/2 và x = 1, hệ số a = 2 > 0

Do đó 2x2 – x – 1 mang dấu + khi x < –1/2 hoặc x > 1 và mang dấu – khi –1/2 < x < 1.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 ⇔ x ∈ (–∞; –1/2) ∪ (0; 1) ∪ (4/3; +∞)

f(x) = 0 ⇔ x ∈ {–1/2; 0; 1; 4/3}

f(x) < 0 ⇔ x ∈ (–1/2; 0) ∪ (1; 4/3)

Bình luận (0)
QL
Xem chi tiết
KT
23 tháng 9 2023 lúc 23:48

Tham khảo:

a) \(f\left( x \right) =  - 3{x^2} + 4x - 1\)

\(a =  - 3 < 0\), \(\Delta  = {4^2} - 4.\left( { - 3} \right).\left( { - 1} \right) = 4 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x = \frac{1}{3},x = 1\)

Bảng xét dấu:

b) \(f\left( x \right) = {x^2} - x - 12\)

\(a = 1 > 0\), \(\Delta  = {\left( { - 1} \right)^2} - 4.1.\left( { - 12} \right) = 49 > 0\)

=> \(f\left( x \right)\) có 2 nghiệm \(x =  - 3,x = 4\)

Bảng xét dấu:

c) \(f\left( x \right) = 16{x^2} + 24x + 9\)

\(a = 16 > 0\), \(\Delta ' = {12^2} - 16.9 = 0\)

=> \(f\left( x \right)\) có nghiệm duy nhất \(x =  - \frac{3}{4}\)

Bảng xét dấu:

Bình luận (0)
VT
Xem chi tiết
DQ
24 tháng 2 2016 lúc 8:26

Ta có \(a=-5<0;\Delta'=16>0;x_1=-\frac{3}{5};x_2=1\)

Bảng xét dấu :

\(x\)\(-\infty\)             \(-\frac{3}{5}\)                  1                   \(+\infty\)
\(f\left(x\right)\)              -           0        +                   -

Từ bảng xét, ta được :

\(T\left(f\left(x\right)=0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ne0\right)=R\)\(\left\{-\frac{3}{5};1\right\}\)

\(T\left(f\left(x\right)>0\right)=\left\{-\frac{3}{5};1\right\}\) ; \(T\left(f\left(x\right)\ge0\right)=\left[-\frac{3}{5};1\right]\)

Từ : \(T\left(f\left(x\right)<0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\) ; \(T\left(f\left(x\right)\le0\right)=\left(-\infty;-\frac{3}{5}\right)\cup\left(1;+\infty\right)\)

Bình luận (0)
PB
Xem chi tiết
CT
15 tháng 2 2018 lúc 10:58

f(x) = (3x2 – 10x + 3)(4x – 5)

+ Tam thức 3x2 – 10x + 3 có hai nghiệm x = 1/3 và x = 3, hệ số a = 3 > 0 nên mang dấu + nếu x < 1/3 hoặc x > 3 và mang dấu – nếu 1/3 < x < 3.

+ Nhị thức 4x – 5 có nghiệm x = 5/4.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (1/3; 5/4) ∪ x ∈ (3; +∞)

f(x) = 0 khi x ∈ {1/3; 5/4; 3}

f(x) < 0 khi x ∈ (–∞; 1/3) ∪ (5/4; 3)

Bình luận (0)
H24
Xem chi tiết
PH
30 tháng 1 2021 lúc 18:55

undefined

Bình luận (0)
MT
Xem chi tiết
PV
Xem chi tiết
NN
23 tháng 2 2016 lúc 15:29

Có a=1>0; \(\Delta=-3<0\)

Bảng xét dấu :

x\(-\infty\)                                                                            \(+\infty\)
\(f\left(x\right)\)                                                     +

Từ bảng xét dấu trên, ta được :

\(T\left(f\left(x\right)=0\right)=\varnothing;T\left(f\left(x\right)\ne0\right)=R;T\left(f\left(x\right)>0\right)=R;T\left(f\left(x\right)\ge0\right)=R\)

\(T\left(f\left(x\right)<0\right)=\varnothing;T\left(f\left(x\right)\le0\right)=\varnothing\)

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 11 2019 lúc 12:42

f(x) = (4x2 – 1)(–8x2 + x – 3)(2x + 9)

+ Tam thức 4x2 – 1 có hai nghiệm x = –1/2 và x = 1/2, hệ số a = 4 > 0

Do đó 4x2 – 1 mang dấu + nếu x < –1/2 hoặc x > 1/2 và mang dấu – nếu –1/2 < x < 1/2

+ Tam thức –8x2 + x – 3 có Δ = –95 < 0, hệ số a = –8 < 0 nên luôn mang dấu –.

+ Nhị thức 2x + 9 có nghiệm x = –9/2.

Ta có bảng xét dấu:

Giải bài 2 trang 105 SGK Đại Số 10 | Giải toán lớp 10

Kết luận:

f(x) > 0 khi x ∈ (–∞; –9/2) ∪ (–1/2; 1/2)

f(x) = 0 khi x ∈ {–9/2; –1/2; 1/2}

f(x) < 0 khi x ∈ (–9/2; –1/2) ∪ (1/2; +∞)

Bình luận (0)
NL
Xem chi tiết