Những câu hỏi liên quan
KJ
Xem chi tiết
H24
13 tháng 12 2021 lúc 15:16

Tham Khảo:

Bình luận (0)
H24
13 tháng 12 2021 lúc 15:18

Giả sử: \(UCLN\left(2n+3;4n+8\right)=d\)

=> \(\left\{{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\) => \(\left\{{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

=> \(2⋮d\) => \(\left[{}\begin{matrix}d=1\\d=2\end{matrix}\right.\)

Có 2n+3 là số lẻ => \(2n+3⋮̸2\)

=> d = 1

=> đpcm

Bình luận (0)
DL
Xem chi tiết
FT
21 tháng 12 2021 lúc 8:50

Gọi \(d=UCLN\left(2n+3,4n+8\right)\)

Suy ra \(2n+3\)chia hết cho d và \(4n+8\)chia hết cho d

Ta có :

\(2n+3\)chia hết cho d \(=2.\left(2n+3\right)\text{⋮}d\)nên 

Vì \(4n+8\text{⋮}d\)và \(4n+6\text{⋮}d\)nên 

\(\left(4n+8\right)-\left(4n+6\right)\text{⋮}d=2\text{⋮}d=d..\left\{1;2\right\}\)

Vì \(2n+3\)là số lẻ nên \(d=2\)

Vậy đó

Bình luận (0)
 Khách vãng lai đã xóa
HL
Xem chi tiết
NT
16 tháng 5 2023 lúc 13:06

Gọi d=ƯCLN(2n+5;4n+8)

=>4n+10-4n-8 chia hết cho d

=>2 chia hết cho d

mà 2n+5 lẻ

nên d=1

=>ĐPCM

Bình luận (0)
NN
Xem chi tiết
ND
25 tháng 12 2021 lúc 17:15

Gọi \(d=UCLN\left(2n+3,4n+8\right)\)

Suy ra \(2n+3\)chia hết d và \(4n+8\)chia hết d

Ta có :

\(2n+3\)chia hết d \(=2=2.\left(2n+3\right)\)chia hết d \(=4n+6\)chia hết d 

Vì \(4n+8\)chia hết d và \(4n+6\)chia hết d nên \(\left(4n+8\right)-\left(4n+6\right)\)

chia hết d nên 2 chia hết d và d thuộc { 1;2}

Vì 2n+ 3 là số lẻ nên d = 2 là không thỏa mãn . Vậy d = 1 . Vậy với mọi số tự nhiên n thì 2n + 3 và 4n + 8 là hai số nguyên tố cùng nhau

Bình luận (0)
 Khách vãng lai đã xóa
ND
25 tháng 12 2021 lúc 17:18

         sdasdaasdgafyukdhasgujhdsagdsjkhdsakisa

Bình luận (0)
 Khách vãng lai đã xóa
UT

Giả sử : \(UCLN\left(2n+3;4n+8\right)=d\)

\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\)\(\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(2⋮d\)\(\orbr{\begin{cases}d=1\\d=2\end{cases}}\)

Ta có 2n + 3 là số lẻ = 2n+3⋮/2

= d= 1

Và ta có được đpcm

Bình luận (0)
 Khách vãng lai đã xóa
KP
Xem chi tiết
TP
22 tháng 12 2021 lúc 10:02
1 con vịt +100099765331123456787765542123345660976999999wfeg😠😯😠😬😯😬😬😯😂😕😉😠😯😬
Bình luận (0)
 Khách vãng lai đã xóa
TQ
Xem chi tiết
H24
13 tháng 12 2018 lúc 19:22

\(Gọi:d=UCLN\left(2n+3;4n+8\right).Taco\)

\(\hept{\begin{cases}2n+3⋮d\\4n+8⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+8⋮d\end{cases}}\)

\(\Rightarrow\left(4n+8\right)-\left(4n+6\right)⋮d\Rightarrow2⋮d\Rightarrow d\in\left\{1;2\right\}\)

Vì: 2n+3 là số lẻ nên d là số lẻ

=> d=1. Vậy 2n+3 và 4n+8 là 2 số nguyên tố cùng nhau

Bình luận (0)
TQ
15 tháng 12 2018 lúc 12:39

cảm ơn bạn

Bình luận (0)
US
Xem chi tiết
TM
30 tháng 5 2017 lúc 22:38

a) Gọi d là ƯCLN(7n+1;5n+7) => 7n+10 chia hết cho d; 5n+7 chia hết cho d

=>5(7n+10) chia hết cho d; 7(5n+7) chia hết cho d

=>35n+50 chia hết cho d; 35n+49 chia hết cho d

=>(35n+50)-(35n+49) chia hết cho d

=>1 chia hết cho d

=>d=1

=>7n+10 và 5n+7 nguyên tố cùng nhau với mọi n

Bình luận (0)
TM
30 tháng 5 2017 lúc 22:47

b) Gọi m là ƯCLN(2n+3;4n+8) => 2n+3 chia hết cho m;4n+8 chia hết cho m

=>2(2n+3) chia hết cho m => 4n+6 chia hết cho m

=>(4n+8)-(4n+6) chia hết cho m 

=>2 chia hết cho m

=>m thuộc {1;2}

2n+3 là số lẻ => 2n+3 không chia hết cho 2 => m khác 2

=>m=1

=>đpcm

Bình luận (0)
ML
31 tháng 5 2017 lúc 5:47

a) 7n + 10 và 5n + 7

Gọi UCLN (7n + 10;5n + 7) = d

7n + 10 = 35n + 50

5n + 7 = 35n + 49

Ta có:UCLN (35n + 50;35n + 49) = d

          UCLN (50 ; 49) = d : d = 1

Vậy 7n + 10 và 5n + 7 là số nguyên tố trùng nhau (ĐPCM)

b) 2n + 3 và 4n + 8

Gọi UCLN (2n + 3;4n + 8) là d

2n + 3

4n + 8 = 2n + 4

Ta có: UCLN (2n + 3;2n + 4)

          UCLN (3 ; 4) = d : d = 1

Vậy 2n + 3 và 4n + 8 là hai số nguyên tố trùng nhau (ĐPCM)

Bình luận (0)
ND
Xem chi tiết
DV
2 tháng 7 2015 lúc 19:02

a) Gọi d > 0 \(\in\) ƯC(7n+10;5n+7)
\(\Rightarrow\) d \(\in\) Ư [5.(7n+10) = 35n +50]
và d là ước số của 7(5n+7)= 35n +49 
mà (35n + 50) - (35n +49) =1 
\(\Rightarrow\) d là ước số của 1 \(\Rightarrow\) d = 1 
vậy 7n+10 và 5n+7 nguyên tố cùng nhau. 

b) Gọi d > 0 là ước số chung của 2n+3 và 4n + 8 
\(\Rightarrow\) d \(\in\) Ư [2(2n + 3) = 4n + 6] 
(4n + 8) - (4n + 6) = 2 
\(\Rightarrow\) d \(\in\) Ư(2) \(\Rightarrow\) d \(\in\) {1,2} 
d = 2 không là ước số của số lẻ 2n+3 \(\Rightarrow\) d = 1 
vậy 2n+3 và 4n + 8 nguyên tố cùng nhau. 

Bình luận (0)
DQ
11 tháng 8 2016 lúc 9:09

 Vây : 2n + 3 va 4n + 8 nguyên tố cùng nhau

Bình luận (0)
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)