Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
.
Xem chi tiết

C Ở DÂU HẢ BẠN!!

\(\frac{4}{9}< \frac{5}{11}< \frac{10}{21}\)\(5.5=25-2.11=3\)

Bình luận (0)
 Khách vãng lai đã xóa
JN
Xem chi tiết
SD
Xem chi tiết
DL
16 tháng 3 2016 lúc 23:28

Ta có: 4/9<a/b

=>4b<9a hay 5a+4a>2b+2b

5a-2b>4a+2b

3>4a+2b(1)

Ta có: a/b<10/21

=>21a<10b hay 5a+16a<2b+8b

5a-2b<8b-16a(2)

Từ (1);(2) =>4a+2b<8b-16a

4a+16a<8b-2b

20a<6b

a/b<6/20

Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*

Bình luận (0)
SD
16 tháng 3 2016 lúc 23:31

đợi  e coi

Bình luận (1)
BL
Xem chi tiết
TA
Xem chi tiết
DT
29 tháng 2 2024 lúc 17:34

\(\dfrac{4}{9}< \dfrac{a}{b}\left(b\ne0\right)< \dfrac{10}{21}\\ \Rightarrow\dfrac{21}{63}< \dfrac{a}{b}< \dfrac{30}{63}\)

\(\Rightarrow\left\{{}\begin{matrix}21< a< 30\\b=63\end{matrix}\right.\)

Lại có : 5a-2b=3

=> 5a=3+2.63

=> 5a=129

=> a=129/5 (thỏa mãn)

Khi đó : \(\dfrac{a}{b}=\dfrac{\dfrac{129}{5}}{63}\)

Bình luận (0)
PV
Xem chi tiết
AA
Xem chi tiết
TV
Xem chi tiết
KN
Xem chi tiết
ND
17 tháng 10 2020 lúc 19:55

1. Ta có: \(ab+bc+ca=3abc\)

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)

Áp dụng Cauchy ta được:

\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)

\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)

\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)

\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)

\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)

\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)

\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)

\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)

\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)

\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)

\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)

\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)

Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)

Bình luận (0)
 Khách vãng lai đã xóa