Tìm phân số \(\frac{a}{b}\) thỏa mãn \(\frac{4}{9}< \frac{a}{b}< \frac{10}{21}\) và 5a - 2b =3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm \(a,b\) là các số tự nhiên khác 0 thỏa mãn \(\frac{4}{9}< \frac{a}{b}< \frac{10}{21}\) và \(5a-2b=3\).
C Ở DÂU HẢ BẠN!!
\(\frac{4}{9}< \frac{5}{11}< \frac{10}{21}\)VÀ\(5.5=25-2.11=3\)
Bài 1 : Tìm các số tự nhiên a , b thỏa mãn điều kiện : \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\) và 5a - 2b = 3
Bài 2 : Tìm các số tự nhiên a , b thỏa mãn điều kiện : \(\frac{4}{9}< \frac{a}{b}< \frac{10}{21}\) và 5a - 2b = 3
TỚ THỀ KHÔNG SAI ĐỀ BÀI ĐÂU VÀ CÁC BẠN HIARI GIÚP MÌNH VỚI MÌNH ĐANG RẤT VỘI
TRÂN THÀNH CẢM ƠN
Tìm \(\frac{a}{b}\) sao cho \(\frac{4}{9}\) <\(\frac{a}{b}\)<\(\frac{10}{21}\) và 5a-2b=3
Ta có: 4/9<a/b
=>4b<9a hay 5a+4a>2b+2b
5a-2b>4a+2b
3>4a+2b(1)
Ta có: a/b<10/21
=>21a<10b hay 5a+16a<2b+8b
5a-2b<8b-16a(2)
Từ (1);(2) =>4a+2b<8b-16a
4a+16a<8b-2b
20a<6b
a/b<6/20
Vậy a/b<6/20 thì thỏa mãn đề*nghĩ v*
Tìm 2 số tự nhiên a, b sao cho \(\frac{4}{9}<\frac{a}{b}<\frac{10}{21}\)và 5a - 2b = 3
Tìm phân số a/b thỏa mãn các điều kiện: 4/9<a/b<10/21 và 5a-2b=3
\(\dfrac{4}{9}< \dfrac{a}{b}\left(b\ne0\right)< \dfrac{10}{21}\\ \Rightarrow\dfrac{21}{63}< \dfrac{a}{b}< \dfrac{30}{63}\)
\(\Rightarrow\left\{{}\begin{matrix}21< a< 30\\b=63\end{matrix}\right.\)
Lại có : 5a-2b=3
=> 5a=3+2.63
=> 5a=129
=> a=129/5 (thỏa mãn)
Khi đó : \(\dfrac{a}{b}=\dfrac{\dfrac{129}{5}}{63}\)
Tìm phân số a/b thỏa mãn các điều kiện sau 4/9<a/b<10/21 và 5a-2b=3
tìm giá trị a-2b thỏa mãn \(\frac{9}{2}-\frac{1}{2}.\frac{4}{9}=\frac{a}{b}\)(a/b là phân số tối giản , b<0 )
giúp mình bài toán này với tìm a và b biết \(\frac{4}{9}
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
1. Ta có: \(ab+bc+ca=3abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Đặt \(\hept{\begin{cases}\frac{1}{a}=m\\\frac{1}{b}=n\\\frac{1}{c}=p\end{cases}}\) khi đó \(\hept{\begin{cases}m+n+p=3\\M=2\left(m^2+n^2+p^2\right)+mnp\end{cases}}\)
Áp dụng Cauchy ta được:
\(\left(m+n-p\right)\left(m-n+p\right)\le\left(\frac{m+n-p+m-n+p}{2}\right)^2=m^2\)
\(\left(n+p-m\right)\left(n+m-p\right)\le n^2\)
\(\left(p-n+m\right)\left(p-m+n\right)\le p^2\)
\(\Rightarrow\left(m+n-p\right)\left(n+p-m\right)\left(p+m-n\right)\le mnp\)
\(\Leftrightarrow m^3+n^3+p^3+3mnp\ge m^2n+mn^2+n^2p+np^2+p^2m+pm^2\)
\(\Leftrightarrow\left(m+n+p\right)\left(m^2+n^2+p^2-mn-np-pm\right)+6mnp\ge mn\left(m-n\right)+np\left(n-p\right)+pm\left(p-m\right)\)
\(=mn\left(3-p\right)+np\left(3-m\right)+pm\left(3-n\right)\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)-3\left(mn+np+pm\right)+6mnp\ge3\left(mn+np+pm\right)-3mnp\)
\(\Leftrightarrow3\left(m^2+n^2+p^2\right)+9mnp\ge6\left(mn+np+pm\right)\)
\(\Leftrightarrow xyz\ge\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(\Rightarrow M\ge2\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)-\frac{1}{3}\left(m^2+n^2+p^2\right)\)
\(=\frac{5}{3}\left(m^2+n^2+p^2\right)+\frac{2}{3}\left(mn+np+pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m^2+n^2+p^2+2mn+2np+2pm\right)\)
\(=\frac{4}{3}\left(m^2+n^2+p^2\right)+\frac{1}{3}\left(m+n+p\right)^2\)
\(\ge\frac{4}{3}\cdot3+\frac{1}{3}\cdot3^2=4+3=7\)
Dấu "=" xảy ra khi: \(m=n=p=1\Leftrightarrow a=b=c=1\)