Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NM
Xem chi tiết
NT
19 tháng 8 2017 lúc 20:04

a, Ta có: \(4\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}\equiv1\left(mod3\right)\)

\(\Rightarrow4^{2018}-1⋮3\)

b, Ta có: \(5\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}\equiv1\left(mod4\right)\)

\(\Rightarrow5^{2019}-1⋮4\)

c, \(4\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}\equiv-1\left(mod5\right)\)

\(\Rightarrow4^{2019}+1⋮5\)

d, \(5\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}\equiv-1\left(mod6\right)\)

\(\Rightarrow5^{2017}+1⋮6\)

Bình luận (0)
PT
19 tháng 8 2017 lúc 20:05

1. Vì \(4\) chia \(3\)\(1\)

\(\Rightarrow4^{2018}\) chia \(3\)\(1^{2018}=1.\)

\(\Rightarrow4^{2018}-1\) chia hết cho \(3.\)

Bình luận (0)
TL
15 tháng 4 2023 lúc 6:42

a, Ta có: 4≡1(mod3)4≡1(���3)

⇒42018≡1(mod3)⇒42018≡1(���3)

⇒42018−1⋮3⇒42018−1⋮3

b, Ta có: 5≡1(mod4)5≡1(���4)

⇒52019≡1(mod4)⇒52019≡1(���4)

⇒52019−1⋮4⇒52019−1⋮4

c, 4≡−1(mod5)4≡−1(���5)

⇒42019≡−1(mod5)⇒42019≡−1(���5)

⇒42019+1⋮5⇒42019+1⋮5

d, 5≡−1(mod6)5≡−1(���6)

⇒52017≡−1(mod6)⇒52017≡−1(���6)

⇒52017+1⋮6

Bình luận (0)
NT
Xem chi tiết
H24
31 tháng 8 2018 lúc 20:31

tìm chữ số tận cung của tổng trên ra

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:08

Đặt \(D=1+4+...+4^{2019}\)

\(\Leftrightarrow4D=4+4^2+...+4^{2020}\)

\(\Leftrightarrow D=\dfrac{4^{2020}-1}{3}\)

\(C=75\cdot D+25\)

\(=25\left(4^{2020}-1\right)+25=25\cdot4\cdot4^{2019}⋮100\)

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:09

undefined

Bình luận (0)
NA
Xem chi tiết
NT
12 tháng 5 2022 lúc 19:09

undefined

Bình luận (0)
H24
Xem chi tiết
H24
17 tháng 10 2018 lúc 11:49

\(1+4+4^2+4^3+.....+4^{2018}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+....+\left(4^{2016}+4^{2017}+4^{2018}\right)\)

\(=21+\left[4^3\left(1+4+4^2\right)\right]+....+\left[4^{2016}\left(1+4+4^2\right)\right]\)

\(=21+4^3\cdot21+....+4^{2016}\cdot21\)

\(=21\left(1+4^3+....+4^{2016}\right)\)

\(\Rightarrowđpcm\)

Bình luận (0)
TT
Xem chi tiết
LH
Xem chi tiết
H24
Xem chi tiết
HH
19 tháng 12 2019 lúc 0:45

a) Ta có: \(M=3+3^2+3^3+...+3^{2017}+3^{2018}+3^{2019}\)

\(=3.\left(1+3+3^2+3^3+...+3^{2016}+3^{2017}+3^{2018}\right)\)

\(\Rightarrow M⋮3\)

_Học tốt_

Bình luận (0)
 Khách vãng lai đã xóa