Những câu hỏi liên quan
ND
Xem chi tiết
NT
17 tháng 1 2023 lúc 14:39

(2n+1)-(2n-1)=2n+1-2n+1=2

=>2n+1 và 2n-1 là hai số lẻ liên tiếp

Bình luận (0)
DG
Xem chi tiết
AH
18 tháng 11 2023 lúc 20:12

Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.

Gọi $d=ƯCLN(2k+1, 2k+3)$

$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$

$\Rightarrow (2k+3)-(2k+1)\vdots d$

$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$

Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)

$\Rightarrow d=1$

Vậy $2k+1,2k+3$ nguyên tố cùng nhau. 

Ta có đpcm.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:15

Bài 2:

a. Gọi $d=ƯCLN(n+1, n+2)$

$\Rightarrow n+1\vdots d; n+2\vdots d$

$\Rightarrow (n+2)-(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau. 

b.

Gọi $d=ƯCLN(2n+2, 2n+3)$

$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$

$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.

Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.

Bình luận (0)
AH
18 tháng 11 2023 lúc 20:16

Bài 2:

c.

Gọi $d=ƯCLN(2n+1, n+1)$

$\Rightarrow 2n+1\vdots d; n+1\vdots d$
$\Rightarrow 2(n+1)-(2n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$

Vậy $ƯCLN(2n+1, n+1)=1$ nên 2 số này nguyên tố cùng nhau.

d.

Gọi $d=ƯCLN(n+1, 3n+4)$

$\Rightarrow n+1\vdots d; 3n+4\vdots d$

$\Rightarrow 3n+4-3(n+1)\vdots d$

$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $ƯCLN(n+1, 3n+4)=1$

$\Rightarrow$ 2 số này nguyên tố cùng nhau.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 4 2017 lúc 18:02

a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau

b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm

c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1d => d = 1 => dpcm

Bình luận (0)
H24
25 tháng 12 2021 lúc 10:30

Thank you

 

Bình luận (0)
PB
Xem chi tiết
CT
2 tháng 6 2017 lúc 13:15

Bình luận (0)
TL
31 tháng 10 2024 lúc 20:57

Đặt (3n+1,2n+1)=₫

=>(2(3n+1(,3(2n+1)=₫

=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫

=>6n+3-6n+2...₫=>1...₫=>₫=1

=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau

 

Bình luận (0)
NT
Xem chi tiết
NQ
2 tháng 10 2021 lúc 18:52

không mất tổng quát ta giả sử p<q

vì đây là hai số lẻ liên tiếp nên : \(q=p+2\)

do đố ta có : \(2p+2=2n\Leftrightarrow n=p+1\)

do p nguyên tố lẻ nên p+1 là số chẵn nên n là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
NA
Xem chi tiết
DS
23 tháng 7 2016 lúc 21:12

a)Gọi 2 số tự nhiên liên tiếp là a;a+1

=>a+1-a  chia hết cho WCLN của a;a+1

=1 mà ước của 1 là 1 nên ước chung lớn nhất của a;a+1 là 1.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

b)Gọi 2 số lẻ liên tiếp là a;a+2.

Làm như trên:

Hiệu:a+2-a=2

Vậy ước chung lớn nhất của a;a+2 là 1 hoặc 2.

Mà số lẻ ko chia hết cho 2 nên ước chung lớn nhất của a;a+2 là 1.

Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.

c)Gọi WCLN(2n+1;3n+1)=d.

2n+1 chia hết cho d=>6n+3 chia hết cho d.

3n+1 ------------------=>6n+2 chia hết cho d.

Hiệu chia hết cho d,hiệu =1=>...

Vậy là số nguyên tố cùng nhau.

Chúc em học tốt^^

Bình luận (0)
H24
Xem chi tiết
LD
19 tháng 12 2017 lúc 19:40

a, Ta phải chứng minh  ƯCLN(2n+1 ; 2n+3)=1

đặt : ƯCLN(2n+1;2n+3)=d

Suy ra : 2n+1 chia hết cho d 

           2n+3 chia hết cho d

Nên (2n+3) - (2n+1) chia hết cho d Hay 2 chia hết cho d 

 => d thuộc Ư(2)={1;2}

loại d=2 (vì d khác 2)

=> d = 1

Vậy 2 số tự nhiên lẻ liên tiếp nhau là 2 số nguyên tố cùng nhau

b, Gọi ƯCLN ( 2n+5 ; 3n+7)=p

Suy ra : 2n+5 chia hết cho p Hay 3.(2n+5)=6n+15 chia hết cho p

       3n+7 chia hết cho p Hay 2.(3n+7)=6n+14 chia hết cho p

Nên : (6n+15) - (6n+14) chia hết cho p hay 1chia hết cho p

=>p= 1 

vậỷ 2n+5 và 3n+7 là 2 số nguyên tố cùng nhau

Bình luận (0)
H24
Xem chi tiết
NT
31 tháng 12 2016 lúc 10:52

A) Gọi 2 số tự nhiên liên tiếp (khác 0) là n và n+1.

Gọi ƯCLN của 2 số trên là a, ta có: n chia hết cho a; n+1 chia hết cho a => n+1-n chia hết cho a hay 1 chia hết cho a => a=1 => n và n+1 nguyên tố cùng nhau.

Vậy 2 số tự nhiên liên tiếp là 2 số nguyên tố cùng nhau.

Bình luận (0)
NT
31 tháng 12 2016 lúc 11:01

B) Gọi 2 số lẻ liên tiếp là n và n+2. Gọi a là ƯCLN của n và n+2, ta có:

n chia hết cho a; n+2 chia hết cho a => n+2-n chia hết cho a hay 2 chia hết cho a.

Do n; n+2 lẻ nên a lẻ => a=1 => n và n+2 nguyên tố cùng nhau.

Vậy 2 số lẻ liên tiếp nguyên tố cùng nhau.

Bình luận (0)
NT
31 tháng 12 2016 lúc 11:05

C) Gọi a là ƯCLN của 2n+1 và 3n+1 => 2n+1 và 3n+1 chia hết cho a => 6n+3 và 6n+2 chia hết cho a => (6n+3)-(6n+2) chia hết cho a hay 1 chia hết cho a => a=1 => 2n+1 và 3n+1 nguyên tố cùng nhau.

Vậy 2n+1 và 3n+1 nguyên tố cùng nhau.

Bình luận (0)
TT
Xem chi tiết