Những câu hỏi liên quan
NH
Xem chi tiết
KR
7 tháng 5 2018 lúc 18:10

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự 

Bình luận (0)
CA
Xem chi tiết
PH
10 tháng 12 2018 lúc 21:42

\(E=\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\)\(ĐK:x\ne2;x\ne0\))

\(=\frac{x^2}{x-2}.\frac{x^2-4x+4}{x}+3\)

\(=\frac{x^2}{x-2}.\frac{\left(x-2\right)^2}{x}+3=x\left(x-2\right)+3=x^2-2x+3\)

b, \(E=x^2-2x+3=\left(x-1\right)^2+2\ge2\forall x\)

Dấu "=" xảy ra khi \(x-1=0\Rightarrow x=1\)

Vậy GTNN của E là 2 khi x = 1

Bình luận (0)
H24
Xem chi tiết
NT
29 tháng 6 2021 lúc 23:26

b) Ta có: \(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1\)

\(=\left(x+1\right)^2+\left(y-2\right)^2+1\ge1\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-1\\y=2\end{matrix}\right.\)

Vậy: \(B_{min}=1\) khi (x,y)=(-1;2)

c) Ta có: \(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\forall x,y\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(C_{min}=-7\) khi \(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=\dfrac{1}{3}\end{matrix}\right.\)

 

Bình luận (0)
MY
29 tháng 6 2021 lúc 23:50

\(A=2x^2+x=2\left(x^2+\dfrac{1}{2}x\right)=2\left(x^2+2.\dfrac{1}{4}x+\dfrac{1}{16}-\dfrac{1}{16}\right)\)

\(=2\left[\left(x+\dfrac{1}{4}\right)^2-\dfrac{1}{16}\right]\ge-\dfrac{1}{8}\) dấu"=' xảy ra<=>x=\(-\dfrac{1}{4}\)

\(B=x^2+2x+y^2-4y+6\)

\(=x^2+2x+1+y^2-4y+4+1=\left(x+1\right)^2+\left(y-2\right)^2+1\)

\(\ge1\) dấu"=" xảy ra<=>x=-1;y=2

\(C=4x^2+4x+9y^2-6y-5\)

\(=4x^2+4x+1+9y^2-6y+1-7\)

\(=\left(2x+1\right)^2+\left(3y-1\right)^2-7\ge-7\)

dấu"=" xảy ra<=>x=\(-\dfrac{1}{2},y=\dfrac{1}{3}\)

\(D=\left(2+x\right)\left(x+4\right)-\left(x-1\right)\left(x+3\right)^2\)

=\(x^2+6x+8-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2-1-\left(x-1\right)\left(x+3\right)^2\)

\(=\left(x+3\right)^2\left(2-x\right)-1\ge-1\)

dấu"=" xảy ra\(< =>\left[{}\begin{matrix}x=-3\\x=2\end{matrix}\right.\)

Bình luận (0)
NQ
Xem chi tiết
NA
Xem chi tiết
PN
Xem chi tiết
NT
30 tháng 1 2022 lúc 21:06

bài này có GTLN thôi bạn 

\(\Delta'=\left(m+1\right)^2-\left(m^2+4m+3\right)=-2m-2\)

Để pt luôn có 2 nghiệm 

\(-2m-2\ge0\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\)

Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m^2+4m+3\end{matrix}\right.\)

\(A=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

\(=\left|m^2+4m+3+4\left(m+1\right)\right|=\left|m^2+8m+7\right|\)

\(=\left|m^2+8m+16-9\right|=\left|\left(m+4\right)^2-9\right|\)

Ta có : \(m\le-1\Rightarrow m+4\le3\Leftrightarrow\left(m+4\right)^2\le9\Leftrightarrow\left(m+4\right)^2-9\le0\Rightarrow\left|\left(m+4\right)^2-9\right|\le\left|0\right|=0\)

Vậy với m = -1 thì A đạt GTNN là 0 

Bình luận (3)
AH
31 tháng 1 2022 lúc 0:26

Lời giải:

$x^2+2(m+1)x+m^2+4m+3=0$

Để pt có 2 nghiệm $x_1,x_2$ thì:

$\Delta'=(m+1)^2-(m^2+4m+3)\geq 0$

$\Leftrightarrow -2m-2\geq 0\Leftrightarrow m\leq -1$

Áp dụng định lý Viet:

$x_1+x_2=-2(m+1)$

$x_1x_2=m^2+4m+3$
Khi đó:

$A=|x_1x_2-2x_1-2x_2|$

$=|x_1x_2-2(x_1+x_2)|=|m^2+4m+3+4(m+1)|=|m^2+8m+7|$

$=|(m+1)(m+7)|\geq 0$ với mọi $m\leq -1$

Vậy GTNN của $A$ là $0$ khi $m=-1$

 

Bình luận (0)
DS
Xem chi tiết
H24
Xem chi tiết
AH
17 tháng 9 2021 lúc 8:23

a.

$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$

Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$

$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$

Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$

b.

$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$

$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$

Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$

Bình luận (0)
AH
17 tháng 9 2021 lúc 8:24

c. Biểu thức này không có min, chỉ có max

d.

$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$

Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

Bình luận (0)
NS
Xem chi tiết
NQ
21 tháng 11 2017 lúc 21:31

Bạn ơi bài này có cho thêm đk x > 0 ko ?

Bình luận (0)
NS
21 tháng 11 2017 lúc 22:08

có pn nha

Bình luận (0)