Tìm số nguyên x để biểu thức sau có giá trị là số nguyên:
-1/2x+3
Tìm giá trị nguyên của \(x\) để giá trị của biểu thức sau có giá trị là số nguyên. \(A=\dfrac{2x^3+x^2+2x+5}{2x+1}\)
\(A=\left(2x+1\right)\left(x^2+1\right)+\dfrac{4}{2x+1}\) (chia đa thức)
Để A nguyên \(\Rightarrow4⋮2x+1\Rightarrow\left(2x+1\right)=\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x=\left\{-\dfrac{5}{2};-\dfrac{3}{2};-1;0;\dfrac{1}{2};\dfrac{3}{2}\right\}\)
x thỏa mãn đk đề bài là \(x=\left\{-1;0\right\}\)
Cho biểu thức:A=\(\dfrac{2x-1}{x+2}\)
a) Tìm số nguyên x để biểu thức A là phân số
b)Tìm các số nguyên x để biểu thức A có giá trị là 1 số nguyên
c)Tìm các số nguyên x để biểu thức A đạt giá trị lớn nhất,giá trị nhỏ nhất
A = \(\dfrac{2x-1}{x+2}\)
a, A là phân số ⇔ \(x\) + 2 # 0 ⇒ \(x\) # -2
b, Để A là một số nguyên thì 2\(x-1\) ⋮ \(x\) + 2
⇒ 2\(x\) + 4 - 5 ⋮ \(x\) + 2
⇒ 2(\(x\) + 2) - 5 ⋮ \(x\) + 2
⇒ 5 ⋮ \(x\) + 2
⇒ \(x\) + 2 \(\in\) { -5; -1; 1; 5}
⇒ \(x\) \(\in\) { -7; -3; -1; 3}
c, A = \(\dfrac{2x-1}{x+2}\)
A = 2 - \(\dfrac{5}{x+2}\)
Với \(x\) \(\in\) Z và \(x\) < -3 ta có
\(x\) + 2 < - 3 + 2 = -1
⇒ \(\dfrac{5}{x+2}\) > \(\dfrac{5}{-1}\) = -5 ⇒ - \(\dfrac{5}{x+2}\)< 5
⇒ 2 - \(\dfrac{5}{x+2}\) < 2 + 5 = 7 ⇒ A < 7 (1)
Với \(x\) > -3; \(x\) # - 2; \(x\in\) Z ⇒ \(x\) ≥ -1 ⇒ \(x\) + 2 ≥ -1 + 2 = 1
\(\dfrac{5}{x+2}\) > 0 ⇒ - \(\dfrac{5}{x+2}\) < 0 ⇒ 2 - \(\dfrac{5}{x+2}\) < 2 (2)
Với \(x=-3\) ⇒ A = 2 - \(\dfrac{5}{-3+2}\) = 7 (3)
Kết hợp (1); (2) và(3) ta có A(max) = 7 ⇔ \(x\) = -3
Tách phần nguyên của biểu thức sau, rồi tìm giá trị nguyên của x để giá trị của biểu thức cũng là 1 số nguyên:
\(\dfrac{4x^3-3x^2+2x-83}{x-3}\)
Tìm các số nguyên x để biểu thức sau có giá trị là một số nguyên \(y=\dfrac{2x-3}{x-2}\)
\(y=\dfrac{2x-3}{x-2}=\dfrac{2\left(x-2\right)+1}{x-2}=2+\dfrac{1}{x-2}\in Z\\ \Leftrightarrow x-2\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Leftrightarrow x\in\left\{1;3\right\}\)
Tìm giá trị nguyên của biến x để tại đó giá trị của mỗi biểu thức sau là một số nguyên: 2 x - 3
Vì 2 / (x - 3) là một số nguyên nên 2 ⋮ (x – 3) và x ≠ 3
Suy ra: x – 3 ∈ Ư(2) = {- 2; - 1; 1; 2}
Ta có:x – 3 = - 2 ⇒ x = 1; x – 3 = - 1 ⇒ x = 2
x – 3 = 1 ⇒ x = 4; x – 3 = 2 ⇒ x = 5
Vậy với x ∈ {1; 2; 4; 5} thì 2 / (x - 3) là một số nguyên.
tìm các số nguyên x để các biểu thức sau có giá trị nguyên: a)A =7/2X-3 b) B= 2X-1/X-1 c) C=5/x^2 - 3
\(a,\Rightarrow2x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\\ \Rightarrow x\in\left\{-2;1;2;5\right\}\\ b,=\dfrac{2\left(x-1\right)+1}{x-1}=2+\dfrac{1}{x-1}\in Z\\ \Rightarrow x-1\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{0;2\right\}\\ c,\Rightarrow x^2-3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\\ \Rightarrow x^2\in\left\{2;4;8\right\}\\ \Rightarrow x^2=4\left(x\in Z\right)\\ \Rightarrow x=\pm2\)
Tìm giá trị nguyên của x để mỗi biểu thức sau có giá trị là một số nguyên:
a) A= 2x^3+x^2+4x+5 / 2x+1
b) B= x^3 / 6+x^2 / 2+x^3
Tìm các giá trị nguyên của biến số x để biểu thức đã cho cũng có giá trị nguyên:
2x^3+x^2+2x+2/ 2x+1
\(\dfrac{2x^3+x^2+2x+2}{2x+1}\left(đk:x\ne-\dfrac{1}{2}\right)=\dfrac{\left(2x+1\right)\left(x^2+1\right)}{2x+1}+\dfrac{1}{2x+1}=x^2+1+\dfrac{1}{2x+1}\)
Do x nguyên nên để biểu thức trên có giá trị nguyên thì :
\(1⋮2x+1\Rightarrow2x+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow x\in\left\{0;-1\right\}\)
\(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
\(=\dfrac{2x^3+x^2+2x+1+1}{2x+1}\)
\(=x^2+1+\dfrac{1}{2x+1}\)
Để đó là số nguyên thì \(1⋮2x+1\)
\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2x\in\left\{0;-2\right\}\)
hay \(x\in\left\{0;-1\right\}\)
Tìm giá trị nguyên x để biểu thức A 6x 4 2x 1 có giá trị là số nguyên