cho PT x^2 -2(m+1)x+m^2+2=0(m là tham số).giải PT (1) với m=1
Cho pt: \(x^2-2mx+m^2-m+1=0\) (\(m\) là tham số)
\(a)\)Giải pt với \(m=1\)
\(b)\)Tìm \(m\) để phương trình có \(2\) nghiệm phân biệt \(x\)\(1\) ; \(x\)\(2\)
`a)` Thay `m = 1` vào ptr:
`x^2 - 2 . 1 x + 1^2 - 1 + 1 = 0`
`<=>x^2 - 2x + 1 = 0`
`<=>(x - 1)^2=0`
`<=>x-1=0<=>x=1`
___________________________________________
`b)` Ptr có `2` nghiệm pb
`<=>\Delta' > 0`
`<=>b'^2-ac > 0`
`<=>(-m)^2-(m^2-m+1) > 0`
`<=>m^2-m^2+m-1 > 0`
`<=>m > 1`
cho pt x\(^2\) +2(m-1)x-m=0(1) m là tham số.
a) giải pt (1) với m=1.
b) tìm giá trị của m sao cho các nghiệm x\(_1\), x\(_2\)của pt (1)thỏa mãn
2(x\(_1\)+x\(_2\))-3x \(_1\)x\(_2\)+9=0
a: Thay m=1 vào pt, ta được:
\(x^2-1=0\)
=>(x-1)(x+1)=0
=>x=1 hoặc x=-1
b: \(\text{Δ}=\left(2m-2\right)^2-4\cdot\left(-m\right)\)
\(=4m^2-8m+4+4m\)
\(=4m^2-4m+4\)
\(=4\left(m^2-m+1\right)\)
\(=4m^2-4m+1+3=\left(2m-1\right)^2+3>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(2\left(x_1+x_2\right)-3x_1x_2+9=0\)
\(\Leftrightarrow2\cdot\left[-2\left(m-1\right)\right]-3\cdot\left(-m\right)+9=0\)
\(\Leftrightarrow-4\left(m-1\right)+3m+9=0\)
=>-4m+4+3m+9=0
=>13-m=0
hay m=13
a, Thay m = 1 ta được
\(x^2-1=0\Leftrightarrow x=1;x=-1\)
b,
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m-1\right)\\x_1x_2=-m\end{matrix}\right.\)
\(-4\left(m-1\right)+3m+9=0\Leftrightarrow-m+13=0\Leftrightarrow m=13\)
Cho pt x2 + 2(m+1)x - 2m4 + m2 = 0 (m là tham số)
a) Giải pt khi m = 1
b) Chứng minh rằng pt luôn có 2 nghiệm phân biệt với mọi m
a)
Thế m = 1 vào PT được: \(x^2+2\left(1+1\right)x-2.1^4+1^2=0\)
<=> \(x^2+4x-1=0\)
\(\Delta=16+4=20\)
\(\left\{{}\begin{matrix}x_1=-2+\sqrt{5}\\x_2=-2-\sqrt{5}\end{matrix}\right.\)
b) đề đúng chưa=)
Cho pt \(x^2-2\left(m+1\right)x+m-4=0\) (m là tham số)
a, giải pt khi m=4
b, C/m rằng với mọi giá trị của m pt luôn có 2 nghiệm phân biệt
\(a,m=4\Leftrightarrow x^2-10x=0\Leftrightarrow x\left(x-10\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=10\end{matrix}\right.\\ b,\Delta'=\left(m+1\right)^2-\left(m-4\right)=m^2+m+5=\left(m+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>0\)
Vậy PT luôn có 2 nghiệm phân biệt với mọi m
giải pt với m là tham số
a. x 2 - x + m = 0
b. ( m - 1 )x 2 + x -1 = 0
c. 2x 2 - mx + 2 = 0
Cho pt (x - 2)(x2 -4x +3m) = 0 (1) (m là tham số)
1, Giải pt (1) với m = 1
2, Tìm m để pt (1) chỉ có 1 nghiệm
trào lưu tag à Nguyễn Thị Bình Yên
Trần Thanh PhươngNguyễn Văn Đạt?Amanda?svtkvtmVũ Minh Tuấn! # %HISINOMA KINIMADONguyễn Kim HưngMr.VôDanhtthlê thị hương giangbuithianhthoLê Thanh NhànLê ThảoNguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh HằngRibi Nkok NgokMysterious Personsoyeon_Tiểubàng giảiVõ Đông Anh TuấnPhương AnTrần Việt Linh
1. Thay m=1 ta có :
\(\left(1\right)\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)
Vậy...
2. Làm liều vậy, dạng này chưa học.
+) Xét \(x=2\) ta có \(x=2\) là một nghiệm của pt.
Để (1) có nghiệm duy nhất thì \(x^2-4x+3m\) vô nghiệm
\(\Delta=4^2-4\cdot3m\)
\(=16-12m< 0\)
\(\Leftrightarrow m>\frac{4}{3}\)
+) Xét \(x\ne2\) ta có \(x=2\) không là một nghiệm của pt
Để (1) có nghiệm duy nhất thì \(x^2-4x+3m\) có một nghiệm duy nhất.
\(\Delta=4^2-4\cdot3m\)
\(=16-12m=0\)
\(\Leftrightarrow m=\frac{4}{3}\)
Vậy \(m\ge\frac{4}{3}\) thì pt có nghiệm duy nhất.
cho phương trình ( m^2-m)x +m^2 -1=0 (m là tham số) a) giải pt khi m=2 b) tìm m để pt có nghiệm x=-1 c) tìm m để pt có nghiệm , vô nghiệm, vô số nghiệm
a.
Khi \(m=2\) pt trở thành:
\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)
b.
Để pt có nghiệm \(x=-1\)
\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)
\(\Leftrightarrow-m^2+m+m^2-1=0\)
\(\Leftrightarrow m-1=0\)
\(\Leftrightarrow m=1\)
c.
Pt tương đương:
\(\left(m^2-m\right)x=-\left(m^2-1\right)\)
\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)
Pt vô nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)
\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)
Pt có vô số nghiệm khi:
\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)
Lời giải:
a. Khi $m=2$ thì pt trở thành:
$2x+3=0\Leftrightarrow x=-\frac{3}{2}$
b. Để pt có nghiệm $x=-1$ thì:
$(m^2-m).(-1)+m^2-1=0$
$\Leftrightarrow m-1=0\Leftrightarrow m=1$
c.
PT $\Leftrightarrow (m^2-m)x=1-m^2$
Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\)
\(\Leftrightarrow m=0\)
PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)
Để PT có nghiệm thì: $m\neq 0$
(1) Cho phương trình bậc hai ẩn x ( m là tham số)x^2-4x+m=0(1) a) Giải phương trình với m =3 b) Tìm đk của m để phương trình (1) luôn có 2 nghiệm phân biệt (2) Cho phương trình bậc hai x^2-2x -3m+1=0 (m là tham số) (2) a) giải pt với m=0 b)Tìm m để pt (2) có nghiệm phân biệt. ( mng oii giúp mk vs mk đang cần gấp:
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
cho ptx2-(m-1)x-m2+m-2=0 (1) (m là tham số) a)giải pt khi m=1 b)cm pt (1) có 2 ngiệm trái dấu với mọi m c)tìm m để pt (1) có 2 nghiệm sao cho S=x12+x22 đạt GTNN
a: Khi m=1 thì (1) sẽ là x^2-2=0
=>\(x=\pm\sqrt{2}\)
b: a*c=-m^2+m-2
=-(m^2-m+2)
=-(m^2-m+1/4+7/4)
=-(m-1/2)^2-7/4<0 với mọi m
=>Phương trình luôn co hai nghiệm trái dấu
c S=(x1+x2)^2-2x1x2
=(m-1)^2-2(-m^2+m-2)
=m^2-2m+1+2m^2-2m+4
=3m^2-4m+5
=3(m^2-4/3m+5/3)
=3(m^2-2*m*2/3+4/9+11/9)
=3(m-2/3)^2+11/3>=11/3
=>Dấu = xảy ra khi m=2/3