Chứng minh biểu thức: T=1+1/2+1/2^2+1/2^3+...+1/2^2021 không phải là một số nguyên
Câu 5: Chứng minh rằng giá trị biểu thức T= 1/4^2+1/5^2+1/6^2+...+1/99^2+1/100^2 không phải là một số tự nhiên.
ta thấy : \(T=\frac{1}{4^2}+\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{99^2}+\frac{1}{100^2}< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}\) và T > 0
mà \(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{98.99}+\frac{1}{99.100}=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}=\frac{1}{3}-\frac{1}{100}=\frac{97}{300}\)
=> \(0< T< \frac{97}{300}\)
Chứng tỏ tổng T không phải là một số tự nhiên ! ...
Cho A=1 + 1/2^2 + 1/3^2 + .......+1/2021^2 và B= 1/1.2 + 1/2.3 + ......+ 1/2020.2021
a) Tính B
b) Chứng minh rằng A không là số nguyên.
a: B=1-1/2+1/2-1/3+...+1/2020-1/2021
=1-1/2021=2020/2021
b:
1/2^2+1/3^2+...+1/2021^2>0
=>A>1
1/2^2+1/3^2+...+1/2021^2<1-1/2+1/2-1/3+...+1/2020-1/2021=2020/2021
=>A<2020/2021+1
mà A>1
nên 1<A<1+2020/2021
=>A ko là số nguyên
chứng minh rằng: giá trị biểu thức T=1/4^2+1/5^2+1/6^2+....+1/100^2 không phải là 1 số tự nhiên
Bài 5 Cho x, y là các số thực thỏa mãn x^2 + y^2 + xy 3x 3y + 3=0. Chứng minh biểu thức P = (3x +2y 6)^1010 + ( xy+1)^1011 + 2021 có giá trị là một số nguyên.
Mình tự làm tận 1h nên hơi dài 1 tí nhưng chắc chắn đúng đó :))
Ta có: x2 + y2 + xy .- 3x - 3y + 3 = 0
=>( x2 - 2x + 1) - x + ( y2 - 2y + 1) - y + xy + 1 = 0
=> (x-1)2 + (y-1)2 + ( -x + -y + xy +1) = 0
=> (x-1)2 + (y-1)2 + [(-x+ xy) + (-y+1)] = 0
=> (x-1)2 + (y-1)2 + [ x(y-1) - (y-1)] = 0
=> (x-1)2 + (y-1)2 + (x-1)(y-1) = 0
=> (x-1)2 + 2.1/2.(x-1)(y-1) + (1/2)2.(y-1)2 + 3/4.(y-1)2 = 0
=> [x-1+1/2(y-1) ]2 + 3/4.(y-1)2 = 0
Vì: [x-1+1/2(y-1) ]2 >= 0 với mọi x;y thuộc R
3/4.(y-1)2 >= 0 với mọi y thuộc R
=> (x-1+1/2y -1/2 = 0) và ( y-1 = 0)
=> (x = 1/2 -1/2y+1) và (y=1)
=> x = y =1
Chỗ này thay giá trị vào biểu thức rồi chứng minh = cách chỉ ra các cơ số của từng lũy thừa là số nguyên là xong.
Cho x,y là số thực thỏa mãn \(x^2+y^2+xy-3x-3y+3=0\). Chứng minh biểu thức P = \(\left(3x+2y-6\right)^{1010}+\left(x-y+1^{1011}\right)+2021\) có giá trị là một số nguyên
Bài 1: Chứng minh rằng \(\frac{7^{2021}-1}{6}\) là một số tự nhiên.
Bài 2: Chứng minh rằng 20202021 - 1 và 20202021 + 1 không thể đồng thời là số nguyên tố
Xét 3 số tự nhiên liên tiếp \(2020^{2021}-1;2020^{2021};2020^{2022}\) luôn có 1 số chia hết cho 3
Mà \(2020\equiv1\left(mod3\right)\Rightarrow2020^{2021}\equiv1\left(mod3\right)\)
Khi đó một trong 2 số \(2020^{2021}-1;2020^{2021}+1\) chia hết cho 3
=> đpcm
Cho biểu thức B = 1/2^3 + 1/3^3 + 1/4^3 + .. + 1/2021^3. Chứng minh rằng: B<1/2^2
chứng minh biểu thức T=1/4^2+1/5^2+1/6^2+...........+1/99^2+1/100^2 ko phải là một stn
Ta có : \(\frac{1}{4^2}>\frac{1}{4.5}\)
\(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
...
\(\frac{1}{100^2}>\frac{1}{100.101}\)
\(\Rightarrow T>\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}\)
\(T>\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\)
\(T>\frac{1}{4}-\frac{1}{101}=\frac{97}{404}>0\) (1)
Ta lại có : \(\frac{1}{4^2}< \frac{1}{3.4}\)
\(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow T< \frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(T< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(T< \frac{1}{3}-\frac{1}{100}=\frac{97}{300}< 1\) (2)
Từ (1), (2)
\(\Rightarrow T\notinℕ\)
Vậy \(T\notinℕ\).
Bổ sung dòng thứ 3 đếm từ dưới lên : \(\Rightarrow0< T< 1\)
Chứng minh rằng 1/1^2+1/2^2+1/3^2+...+1/100^2 không phải là số nguyên
Đặt A=1/1^2+1/2^2+1/3^2+...+1/100^2
A=1+1/2^2+1/3^2+...+1/100^2>1(1)
A<1+1/1*2+1/2*3+...+1/99*100
A<1+1-1/2+1/2-1/3+...+1/99-1/100
A<2-1/100<2
=>A<2(2)
Từ (1) và (2)=>1<A<2
Nên A không thể là số nguyên
Đặt S= 1/1^2+1/2^2+1/3^2+...+1/100^2
Ta có:1/22<1/1x2
1/32<1/2x3
. . .
1/992<1/89x99
1/1002<1/99x100
=> S<1/1x2+1/2x3+1/3x4+1/4x5+...+1/89x99+1/99x100
=> S<1-1/2+1/2-1/3+...+1/89-1/99+1/99-1/100
=> S<1-1/100
=> S<99/100
Mà 99/100<1
Vậy S không phải số nguyên.