Những câu hỏi liên quan
NT
Xem chi tiết
PG
Xem chi tiết
SM
Xem chi tiết
NL
Xem chi tiết
XO
3 tháng 6 2019 lúc 19:39

Ta có : \(\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)

\((1-\frac{1}{2})+(1-\frac{1}{3})+...+(1-\frac{99}{100})\)(100 cặp số )

\(\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)(100 số hạng 1)

\(1\times100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..+\frac{1}{100}\right)\)

\(100-\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}\right)\)

=> 100-(1+1/2+1/3+...+1/100) = 1/2+2/3+3/4+...+99/100

Bình luận (0)
NL
3 tháng 6 2019 lúc 19:45

Bạn cố giải cho mình dễ hiểu hơn ko?

Bình luận (0)
LP
Xem chi tiết
VT
Xem chi tiết
NN
Xem chi tiết
VM
22 tháng 4 2015 lúc 12:26

Co 1/2^2+1/3^2+...+1/100^2<1/1.2+1/2.3+...+1/99.100

                                           =1-1/2+1/2-1/3+...+1/99-1/100

                                          =1-1/100<1

vay 1/2^2+...+1/100^2<1

Bình luận (0)
PT
22 tháng 4 2015 lúc 12:29

Ta thấy: \(\frac{1}{2^2}

Bình luận (0)
PL
Xem chi tiết
BB
Xem chi tiết
TC
18 tháng 7 2021 lúc 20:47

undefined

Bình luận (0)
H24
18 tháng 7 2021 lúc 20:53

<3 XD

Bình luận (0)