Những câu hỏi liên quan
H24
Xem chi tiết
NT
12 tháng 9 2021 lúc 21:19

Ta có: BC=BH+CH

nên BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=15\left(cm\right)\\AC=20\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
SC
12 tháng 9 2021 lúc 21:17

Bình luận (0)
PQ
Xem chi tiết
TV
Xem chi tiết
BG
26 tháng 8 2021 lúc 10:47

Bình luận (0)
BG
26 tháng 8 2021 lúc 10:47

Bình luận (0)
BG
26 tháng 8 2021 lúc 10:50

d) \(AC=\sqrt{BC^2-AB^2}=8\)

\(AH=\dfrac{AB.AC}{BC}=4,8\)

\(BH=\sqrt{AB^2-AH^2}=3,6\)

\(CH=BC-BH=6,4\)

Bình luận (0)
MT
Xem chi tiết
NT
4 tháng 1 2022 lúc 11:32

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

Bình luận (0)
H24
Xem chi tiết
MY
10 tháng 8 2021 lúc 17:14

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

Bình luận (0)
H24
Xem chi tiết
NT
10 tháng 5 2023 lúc 21:38

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔACB vuông tại A có AH vuông góc BC

nên HA^2=HB*HC

c: \(CB=\sqrt{16^2+12^2}=20\left(cm\right)\)

BH=16^2/20=256/20=12,8cm

Bình luận (1)
HN
10 tháng 5 2023 lúc 22:58

a) Xét △ABC và △HBA có:

  Góc B chung 

Góc BHA = góc BAC=90

⇒ △ABC ∼ △HBA ( g.g)

b)Xét △ABC có:

BC2=AB2+AC2

⇒BC=√(162+122)

⇔BC=20 (cm)

Ta có △ABC ∼ △HBA (g.g)

⇒AB/BC=AB/BH

⇔AB2 =BC.BH

⇔BH=AB2 /BC

⇒BH=162 /20=12,8 (cm)

Bình luận (2)
H24
Xem chi tiết
NT
10 tháng 5 2023 lúc 21:56

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc CB

nên HA^2=HB*HC

c: \(BC=\sqrt{16^2+12^2}=20\left(cm\right)\)

HB=16^2/20=256/20=12,8cm

Bình luận (0)
MT
Xem chi tiết
NM
12 tháng 11 2021 lúc 8:49

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \left\{{}\begin{matrix}AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=6,4\left(cm\right)\\BH=\dfrac{AB^2}{BC}=3,6\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
H24
12 tháng 11 2021 lúc 8:51

Áp dụng PTG ta có: \(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{6^2+8^2}=10\)

Áp dụng HTL ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{6.8}{10}=4,8\)

Áp dụng HTL ta có:\(BH.BC=AB^2\Rightarrow BC=\dfrac{6^2}{10}=3,6\)

Áp dụng HTL ta có:\(CH.BC=AC^2\Rightarrow BC=\dfrac{8^2}{10}=6,4\)

Bình luận (0)
H24
Xem chi tiết
H24
13 tháng 9 2023 lúc 17:32

Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:

BC2=AB2+AC2

<=>BC2=32+42

<=>BC2=25

<=>BC=5(cm)

Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:

AB.AC=BC.AH

<=>3.4=5.AH

<=> AH=\(\dfrac{3.4}{5}\)

<=>AH=2,4(cm)

Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:

AB2=AH2+BH2

<=>BH2=32-2,42

<=>BH2=3,24

<=>BH=1,8(cm)
Ta có:BC=BH+CH

=>CH=BC-BH=5-1,8=3,2(cm)

Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm

 

Bình luận (0)
NT
13 tháng 9 2023 lúc 17:36

loading...  

Bình luận (0)