Những câu hỏi liên quan
H24
Xem chi tiết
H24
Xem chi tiết
AH
29 tháng 7 2021 lúc 11:16

Lời giải:

$a^3+b^3=2(c^3-8d^3)$

$a^3+b^3+c^3+d^3=c^3+d^3+2(c^3-8d^3)$

$=3c^3-15d^3=3(c^3-5d^3)\vdots 3$ 

Khi đó:

$(a+b+c+d)^3=(a+b)^3+(c+d)^3+3(a+b)(c+d)(a+b+c+d)$

$=a^3+b^3+c^3+d^3+3ab(a+b)+3cd(c+d)+3(a+b)(c+d)(a+b+c+d)\vdots 3$ do:

$a^3+b^3+c^3+d^3\vdots 3$

$3ab(a+b)\vdots 3$

$3cd(c+d)\vdots 3$

$3(a+b)(c+d)(a+b+c+d)\vdots 3$

Vậy: 

$(a+b+c+d)^3\vdots 3$

$\Rightarrow a+b+c+d\vdots 3$

Bình luận (4)
CN
Xem chi tiết
NT
2 tháng 7 2023 lúc 20:34

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

Bình luận (0)
TK
Xem chi tiết
TH
9 tháng 1 2021 lúc 22:04

Rõ ràng trong hai số a, b, c tồn tại một số chẵn (Vì nếu a, b, c đều lẻ thì a3 + b3 + c3 là số lẻ, không chia hết cho 14).

Ta lại có \(a^3;b^3;c^3\equiv0;1;-1\).

Do đó nếu a, b, c đều không chia hết cho 7 thì \(a^3;b^3;c^3\equiv1;-1\left(mod7\right)\Rightarrow a^3+b^3+c^3⋮̸7\).

Bình luận (0)
TH
9 tháng 1 2021 lúc 22:05

Làm tiếp: Suy ra trong ba số a, b, c có ít nhất một số chia hết cho 7 \(\Rightarrow abc⋮7\).

Vậy abc chia hết cho 14.

Bình luận (0)
HT
Xem chi tiết
TC
28 tháng 7 2021 lúc 8:01

Bài này cần dùng một ít kiến thức của lớp 8, bạn có thể tìm hiểu thêm.

undefined

Bình luận (0)
HT
Xem chi tiết
DH
Xem chi tiết
LH
Xem chi tiết
HT
30 tháng 11 2016 lúc 19:21

Ta có:P=(a+b)(a+c)(b+c)-abc=(a2b+ab2+b2c+bc2+a2c+ac2+abc+abc)-abc

                                          =(a2b+ab2+abc)+(a2c+ac2+abc)+(b2c+bc2+abc)-2abc

                                          =ab(a+b+c)+ac(a+b+c)+bc(a+b+c)-2abc

                                          =(a+b+c)(ab+ac+bc)-2abc

 thấy a+b+c chia hết cho 4 => (a+b+c)(ab+bc+ac) chia hết cho 4   (1)

Do a+b+c chia hết cho 4 => tồn tại ít nhất trong 3 số a,b,c một số chia hết cho 2=>2abc chia hết cho 4   (2)

Tù (1) và (2)=>P chia hết cho 4

Bình luận (0)
HN
Xem chi tiết