Những câu hỏi liên quan
TY
Xem chi tiết
H24
8 tháng 11 2017 lúc 13:53

\(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left[\left(a+d\right)+\left(b+c\right)\right]\left[\left(a+d\right)-\left(b+c\right)\right]\)

\(=-\left(b+c\right)^2+\left(a+d\right)^2\)   ( 1 )

\(\left(a+b-c-d\right)\left(a-b+c-d\right)=\left(b-c\right)^2-\left(a-d\right)^2\)    ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 

\(b^2+2bc+c^2-a^2-2ad-d^2=a^2-2ad+d^2-b^2+2bc-c^2\)

\(4ad=4ac\Rightarrow ad=bc\)

\(\Rightarrow\)\(\frac{a}{c}=\frac{b}{d}\)( đpcm )

Bình luận (0)
LN
Xem chi tiết
NM
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Bình luận (0)
 Khách vãng lai đã xóa
PD
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
20 tháng 2 2018 lúc 20:31

Đang cần gấp ai trả lời nhanh giúp với

Bình luận (0)
QB
Xem chi tiết
NT
24 tháng 8 2021 lúc 21:14

Ta có: \(\left(a+b+c+d\right)\left(a-b-c+d\right)=\left(a-b+c-d\right)\left(a+b-c-d\right)\)

\(\Leftrightarrow\left(a+d\right)^2-\left(b+c\right)^2=\left(a-d\right)^2-\left(b-c\right)^2\)

\(\Leftrightarrow\left(a+d-a+d\right)\left(a+d+a-d\right)=\left(b+c-b+c\right)\left(b+c+b-c\right)\)

\(\Leftrightarrow2d\cdot2a=2c\cdot2b\)

\(\Leftrightarrow ad=bc\)

hay \(\dfrac{a}{c}=\dfrac{b}{d}\)

Bình luận (0)
ET
Xem chi tiết
NT
31 tháng 12 2023 lúc 13:37

a: \(\dfrac{a+5}{a-5}=\dfrac{b+6}{b-6}\)

=>(a+5)(b-6)=(a-5)(b+6)

=>ab-6a+5b-30=ab+6a-5b-30

=>-6a+5b=6a-5b

=>-12a=-10b

=>6a=5b

=>\(\dfrac{a}{b}=\dfrac{5}{6}\)

b: Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

=>\(a=bk;c=dk\)

\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{b^2k^2+b^2}{d^2k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\dfrac{b^2}{d^2}\)

\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2k}{d^2k}=\dfrac{b^2}{d^2}\)

Do đó: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{ab}{cd}\)

Bình luận (0)
PQ
Xem chi tiết
TN
6 tháng 8 2023 lúc 8:59

Từ đầu bài ta có :`a/b<c/d` hay `ad<bc`

`+,ad<bc`

`=> ad+ab<bc+ab`

`=>a(b+d)<b(c+a)`

hay `a/b<(c+a)/(b+d)(1)`

`+,ad<bc`

`=>ad+cd<bc+cd`

`=>d(a+c)<c(b+d)`

hay `c/d>(a+c)/(b+d)(2)`

Từ `(1)` và `(2)=>a/b<(a+c)/(b+d)<c/d`

Bình luận (0)
TN
6 tháng 8 2023 lúc 8:58

Đề cho `a/b<c/d` ạ ?

Bình luận (0)
H24
Xem chi tiết
LM
Xem chi tiết
KR
14 tháng 6 2017 lúc 10:23

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

\(\Rightarrow\frac{a}{b}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

Bình luận (0)