Những câu hỏi liên quan
TD
Xem chi tiết
DH
17 tháng 10 2021 lúc 10:02

Nếu \(p\ne3\)thì \(p=3k\pm1\).

Khi đó \(p^2+2=\left(3k\pm1\right)^2+3=9k^2\pm6k+3⋮3\)mà dễ thấy \(p^2+2>3\)

do đó \(p^2+2\)không là số nguyên tố. 

Suy ra \(p=3\). Khi đó \(p^3+2=29\)là số nguyên tố. (đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NN
Xem chi tiết
DP
28 tháng 8 2024 lúc 21:28

p=3

Bình luận (0)
NN
Xem chi tiết
TT
Xem chi tiết
QN
Xem chi tiết
BM
Xem chi tiết
Xem chi tiết
H24
28 tháng 12 2017 lúc 10:08

Vì 9 là SNT ( số nguyên tố ) lớn 3

=> p khi chia cho 3 có 2 dạng: 

     p = 3k + 1 hoặc p = 3k + 2 ( k thộc N* )

+) với: p = 3k + 1 => 2p + 1 = 2 . ( 3k + 1 ) + 1

                                          = 6k + 2 + 1 = 6k + 3 chia hết cho 3 và lớn hơn 3

=> 2p + 1 là hợp số ( loại )

Vậy: p = 3k + 2

=> 4p + 1 = 4 . ( 3k + 2 ) + 1

               = 12k + 8 + 1 = 12k + 9 chia hết cho 3 và lớn hơn 3

=> 4p + 1 là hợp số ( điều phải chứng minh )

Kết luận: 

Bình luận (0)
DL
28 tháng 12 2017 lúc 10:11

p nguyên tố > 3

=> p chia 3 dư 1,2

=> 2p + 1 chia 3 dư 0, 2

Mà 2p+1 nguên tố <=> 2p+1 chia 3 dư 2 <=> p chia 3 dư 2

=> 4p+1 = 4(3k+2) + 1 = 12k + 8 + 1 = 12k + 9 chia hết cho 3

=> 4p+1 là hợp số

Bình luận (0)
NP
Xem chi tiết
NT
2 tháng 7 2023 lúc 23:52

TH1: p=3k+1

=>p+2=3k+3(loại)

=>p=3k+2 và p là số lẻ

p+1=3k+3=3(k+1) chia hết cho 3

p là số lẻ

=>p+1 chia hết cho 2

=>p+1 chia hết cho 6

Bình luận (0)