Cho tam giác có số đo 3 góc tỉ lệ với 2;3;4.Số đo góc nhỏ nhất của tam giác là bao nhiêu
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4.
a) Lập tỉ lệ thức biểu diễn mối liên hệ giữa số đo ba góc của tam giác ABC.
b) Tính số đo mỗi góc của tam giác.
`a,` Gọi số đo `3` góc của Tam giác `ABC` lần lượt là `x,y,z (x,y,z \ne 0)`
Tỉ lệ thức biểu diễn mối quan hệ giữa số đo `3` góc trong Tam giác `ABC` là `x/2=y/3=z/4`
`b,` Tổng số đo `3` góc trong `1` tam giác là `180^0`
`-> x+y+z=180`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/4=(x+y+z)/(2+3+4)=180/9=20`
`-> x/2=y/3=z/4=20`
`->x=20*2=40, y=20*3=60, z=20*4=80`
Vậy, số đo của `3` góc trong Tam giác `ABC` lần lượt là `40^0, 60^0, 80^0.`
a:
Đặt \(a=\widehat{A};b=\widehat{B};c=\widehat{C}\)
a/2=b/3=c/4
b: a/2=b/3=c/4=(a+b+c)/(2+3+4)=180/9=20
=>a=40; b=60; c=80
Các bạn ơi giải bài toán này giúp mình với nhé !
Bài 1 :
a) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thận với 3 , 11 , 16 . Tìm số đo các góc của tam giác ABC .
b) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ nghịch với 15 , 16 , 48 . Tìm số đo các góc của tam giác ABC .
c) Cho tam giác ABC có số đo ba góc A , B , C tỉ lệ thuân với 5 , 7 , 8 . Tìm số đo các góc của tam giác ABC.
d) Cho tam giác ABC cósố đo ba góc A , B , C tỉ lệ nghịch với 4 , 4, 3 . Tìm số đo các gọc của tam giác ABC .
mình rất cần bài này để chuẩn bị đi học !
bài này lóp 7 hoc rù nhung quyen lop 7 nhình học giỏi lám đó
1.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ nghịch vs 3;4;6.Tính số đo các góc của tam giác ABC.
2.Cho tam giác ABC có số đo góc A,góc B,góc C tỉ lệ thuận vs 3;4;5.Tính số đo các góc của tam giác ABC.
Tam giác có số đo các góc tỉ lệ với 3 2 7.Tính số đo mỗi góc của tam giác đó
Answer:
Ta gọi số đo ba góc của tam giác đó lần lượt là: x, y, z
Đề ra: \(\frac{x}{3}=\frac{y}{2}=\frac{z}{7}\) và \(x+y+z=180^o\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{2}=\frac{z}{7}=\frac{x}{3+2+7}=\frac{180^o}{12}=15^o\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{3}=15^o\Rightarrow x=45^o\\\frac{y}{2}=15^o\Rightarrow y=30^o\\\frac{z}{7}=15^o\Rightarrow z=105^o\end{cases}}\)
Cho tam giác ABC có số đo 3 góc A;B;C TỈ LỆ VỚI 1;2;3. Tính số đo mỗi góc của tam giác ?
goi a.c.b lan luot la 3 ti le voi 1.2.3
a/1=b/2=c/3 va a+b+c=180 ap dg tih chat day ti so bag nhau ta co a+b+c/1+2+3=180/6= 20 suy ra : a/1=20 =1.20=20 , b/2=20=40, c/3=20=60 vay suy ra : 20,40,60 la A.b.c can tim sory mjh dug may tih nen ko cah dc sỏy nha
Tam giác ABC có số đo các góc A, B, C tỉ lệ với 3, 2, 7. Tính số đo
các góc của tam giác.
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+7}=\dfrac{180^0}{12}=15^0\\ \Rightarrow\left\{{}\begin{matrix}\widehat{A}=45^0\\\widehat{B}=30^0\\\widehat{C}=105^0\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{\widehat{A}}{3}=\dfrac{\widehat{B}}{2}=\dfrac{\widehat{C}}{7}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}}{3+2+7}=\dfrac{180^o}{12}=15^o\)
\(\dfrac{\widehat{A}}{3}=15^o\Rightarrow\widehat{A}=45^o\\ \dfrac{\widehat{B}}{2}=15^o\Rightarrow\widehat{B}=30^o\\ \dfrac{\widehat{C}}{7}=15^o\Rightarrow\widehat{C}=105^o\)
Cho biết số đo 3 góc của 1 tam giác tỉ lệ với 4; 5; 3. Tính số đo 3 góc của tam giác đó
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{3}=\dfrac{a+b+c}{4+5+3}=\dfrac{180}{12}=15\)
Do đó: a=60; b=75; c=45
Cho tam giác ABC có số đo các góc A, B, C lần lượt tỉ lệ với 2; 3; 4. Tính góc B
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{180}{9}=20\)
Do đó: b=60
\(\text{Gọi x;y;z lần lượt là góc 1,góc 2,góc 3:}\)
\(\text{ (đk:x;y;z>0,đơn vị:độ)}\)
\(\text{Ta có:}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\text{ và }x+y+z=180^0\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{180}{9}=20\)
\(\Rightarrow x=20.2=40^0\)
\(y=20.3=60^0\)
\(z=20.4=80^0\)
\(\text{Vậy số đo góc B là:}60^0\)
Tam giác ABC có số đo các góc A;B;C lần lượt tỉ lệ với 1; 2; 3.Tính số đo các góc của
tam giác ABC.
-tổng 3 góc của 1 tam giác=180
-gọi ^A,^B,^C lần lượt là x,y,z
-áp dụng tính chất dãy tỉ số bằng nhau:
x/1=y/2=z/3=x+y+z/1+2+3=180/6=30
suy ra:x/1=30 suy ra x=30
suy ra:y/2=30 suy ra y=60
suy ra:z/3=30 suy ra z=90
suy ra ^A=30o;^B=60o;^C=90o
Theo bài toán ta có:
\(\dfrac{A}{1}\)\(=\)\(\dfrac{B}{2}\)\(=\)\(\dfrac{C}{3}\) và A\(+\)B\(+\)C\(=\)180°(vì tổng ba góc của một tam giác bằng 180°)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{A}{1}\)\(+\)\(\dfrac{B}{2}\)\(+\)\(\dfrac{C}{2}\)\(=\dfrac{A+B+C}{1+2+3}\)\(=\)\(\dfrac{180}{6}\)\(=\)30°
\(\Rightarrow\)\(\dfrac{A}{1}\)\(=\)30°. 1\(=\) 30°
\(\dfrac{B}{2}\)\(=\) 30°. 2\(=\) 60°
\(\dfrac{C}{3}\)\(=\)30°. 3\(=\)90°
Vậy số đo của ba góc A, B, C lần lượt là 30°, 60° và 90°
Một tam giác có số đo 3 góc lần lượt tỉ lệ với 3; 5;7.Tính số đo các góc của tam giác đó