Những câu hỏi liên quan
NH
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
PN
7 tháng 5 2022 lúc 19:10

???????????????loằng ngoằng quá. Tui không hỉu cái GTNN

Bình luận (0)
H24
8 tháng 5 2022 lúc 18:37

GTNN là tắt của giá trị nhỏ nhất, 

Trong bài này bạn biến đổi sao cho biểu thức \(P\ge a\)   (số a là số biết trước) 

VD: Bạn đưa về dạng nào đó của biểu thức mà nó luôn lớn hơn hoặc bằng \(\dfrac{1}{3}\) Bạn có thể viết \(P\ge\dfrac{1}{3}\) thì GTNN của \(P=\dfrac{1}{3}\)  hay \(minP=\dfrac{1}{3}\)

Tìm được GTNN rồi thì bạn tìm ẩn để dấu "=" xảy ra, nghĩa là để BĐT xảy ra dấu =, lúc đó biểu thức P đạt giá trị nhỏ nhất,

 VD như: \(minP=\dfrac{1}{3}\) <=> Dấu = xảy ra

                                  <=> x = b (x là ẩn và b là biết trước)

Ở một số bài có thể cho điều kiện của ẩn.

Bình luận (0)
NL
Xem chi tiết
NL
23 tháng 7 2017 lúc 8:29

trả lời nhanh lên

Bình luận (0)
H24
24 tháng 7 2017 lúc 13:25

2. BÌnh phương lên nhỉ :v

Bình luận (0)
NK
25 tháng 7 2017 lúc 15:42

2. ĐK:  \(0\le x\le\frac{625}{4}\)

Đặt  \(x=\sqrt{\frac{25}{2}+\sqrt{\frac{625}{4}-n}}+\sqrt{\frac{25}{2}-\sqrt{\frac{625}{4}-n}}\)

Ta tính được  \(x^2=25+2\sqrt{n}\le25+2.\frac{25}{2}=50\)

Hiển nhiên  \(x^2\ge25\)  và là số chính phương nên  \(x^2=25+2\sqrt{n}\)  nhận các giá trị 25; 36; 49

Tìm được n = 0 và n = 144

Bình luận (0)
AO
Xem chi tiết
DK
Xem chi tiết
DH
19 tháng 5 2021 lúc 11:38

Ta có: 

\(\left(3a-2b+c\right)^2=9a^2+4b^2+c^2+2\left(3ac-6ab-2bc\right)\)

\(\Rightarrow b^2=9a^2+4b^2+c^2\)

(vì \(3a-3b+c=0\Leftrightarrow3a-2b+c=-b\)\(6ab+2bc-3ac=0\))

\(\Leftrightarrow9a^2+3b^2+c^2=0\)

\(\Leftrightarrow a=b=c=0\)

Khi đó: \(P=\left(-1\right)^{2019}+\left(-1\right)^{2020}+\left(-1\right)^{2021}=-1\)

Bình luận (0)
 Khách vãng lai đã xóa
NS
19 tháng 5 2021 lúc 21:56

Ta có: 

(3a−2b+c)2=9a2+4b2+c2+2(3ac−6ab−2bc)

⇒b2=9a2+4b2+c2

(vì 3a−3b+c=0⇔3a−2b+c=−b6ab+2bc−3ac=0)

⇔9a2+3b2+c2=0

⇔a=b=c=0

Khi đó: P=(−1)2019+(−1)2020+(−1)2021=−1

Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
NL
10 tháng 8 2021 lúc 22:41

\(\Leftrightarrow\dfrac{2+3\left(2a+b+2\sqrt{2bc}\right)}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)

\(\Leftrightarrow3+\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{16}{\sqrt{2b^2+2\left(a+c\right)^2}+3}\)

Do \(\dfrac{2}{2a+b+2\sqrt{2bc}}\ge\dfrac{2}{2a+b+b+2c}=\dfrac{1}{a+b+c}\)

Và \(2b^2+2\left(a+c\right)^2\ge\left(a+b+c\right)^2\)

Nên ta chỉ cần chứng minh:

\(3+\dfrac{1}{a+b+c}\ge\dfrac{16}{a+b+c+3}\)

Thật vậy, ta có:

\(3+\dfrac{1}{a+b+c}=\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{1}+\dfrac{1}{a+b+c}\ge\dfrac{16}{1+1+1+a+b+c}=\dfrac{16}{a+b+c+3}\) (đpcm)

Dấu "=" xảy ra khi \(a=\dfrac{b}{2}=c=\dfrac{1}{4}\)

Bình luận (0)
NT
Xem chi tiết
KL
12 tháng 8 2023 lúc 8:49

a) 5a + 12 = 5(a + 1) + 7

Để a + 1 là ước của 5a + 12 thì a + 1 là ước của 7

⇒ a + 1 ∈ Ư(7) = {1; 7}

⇒ a ∈ {0; 6}

b) 3a + 20 = 3(a + 2) + 14

Để (3a + 20) ⋮ (a + 2) thì 14 ⋮ (a + 2)

⇒ a + 2 ∈ Ư(14) = {1; 2; 7; 14}

Do a ∈ N nên a ∈ {0; 5; 12}

c) Do a ∈ N nên

a² + 16a ∈ Z (với mọi a ∈ N)

Vậy a² + 16a Z với mọi a ∈ N

d) 3ᵅ + 12 ∈ Z

⇒ 3ᵅ ∈ Z

⇒ a ∈ N

Bình luận (0)
CT
Xem chi tiết