Những câu hỏi liên quan
H24
Xem chi tiết
LC
16 tháng 2 2020 lúc 10:53

a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)

Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
Xem chi tiết
DB
18 tháng 12 2017 lúc 17:07

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

Bình luận (0)
HN
Xem chi tiết
MS
10 tháng 8 2017 lúc 18:30

\(A=31-\sqrt{2x+7}\)

Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)

Với mọi \(x\ge-3,5\) ta có:

\(\sqrt{2x+7}\ge0\)

\(\Rightarrow A=31-\sqrt{2x+7}\le31\)

Dấu "=" xảy ra khi:

\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)

Vậy \(MAX_A=31\) khi \(x=-3,5\)

\(B=-9+\sqrt{7+x}\)

Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:

\(x\ge-7\)

Với mọi \(x\ge-7\) ta có:

\(\sqrt{7+x}\ge0\)

\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:

\(\sqrt{7+x}=0\Rightarrow x=-7\)

\(\Rightarrow MIN_B=-9\) khi \(x=-7\)

Bình luận (0)
SC
10 tháng 8 2017 lúc 18:31

a, Sửa đề: Tìm GTLN của biểu thức

\(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)

\(\Rightarrow31-\sqrt{2x+7}\le31\)

Dấu ''='' xảy ra khi :

\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)

Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5

b, Tìm GTNN của B

Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)

\(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)

Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)

Vậy \(B_{Min}=-9\) khi x = -7

p/s: Lần sau gửi đề cẩn thận hơn ||^^

Bình luận (0)
MH
Xem chi tiết
NQ
Xem chi tiết
DL
16 tháng 12 2015 lúc 21:34

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

Bình luận (0)
DV
16 tháng 12 2015 lúc 21:34

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

Bình luận (0)
TO
Xem chi tiết
H24
Xem chi tiết
SN
13 tháng 6 2015 lúc 9:33

để P thuộc Z =>2n+1 chia hết cho n+5

=>2n+10-9 chia hết cho n+5

=>2(n+5)-9 chia hết cho n+5

=>9 chia hết cho n+5

\(\Rightarrow n+5\in\left\{-9;-3;-1;1;3;9\right\}\)

\(\Rightarrow n\in\left\{-14;-8;-6;-4;-2;4\right\}\)

Bình luận (0)
DH
Xem chi tiết
NT
17 tháng 8 2021 lúc 13:44

Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

Bình luận (0)
NN
Xem chi tiết
DH
14 tháng 3 2017 lúc 13:56

a ) \(A=\left|2x-2\right|+\left|2x-2019\right|\ge\left|2-2x+2x-2019\right|=\left|2-2019\right|=2017\)

Để A đạt GTNN là 2017 <=> \(\left(2-2x\right)\left(2x-2019\right)\ge0\Rightarrow1\le x\le\frac{2019}{2}\)

b ) \(\left|2x-4\right|-\left|6-3x\right|=-1\)

\(\Leftrightarrow2\left|x-2\right|-3\left|x-2\right|=-1\)

\(\Leftrightarrow-\left|x-2\right|=-1\)

\(\Rightarrow\left|x-2\right|=1\)

\(\Rightarrow x=1;3\)

Mà x lớn nhất => x = 3

Bình luận (0)