CMR: n(n+1)(n+2)(n+3) chia hết cho 29
cmr: (29^n + 1) . (29^n + 2) . (29^n + 3). (29^n +4) chia hết cho 5 với mọi n
1.Cho a,b thuộc N thỏa mãn (3a+2b) chia hết cho 17. CMR (10a+b) chia hết cho 17.
2.Cho x,y thuộc N thỏa mãn (7x+4y)chia hết cho 29. CMR (9x+y) chia hết cho 29.
3.Cho S là tổng của SSTN liên tiếp. Hỏi S chia cho 8 dư bao nhiêu ?
4.Cho abcd (abcd có dấu gạch ngang ở trên) chia hết cho 29. CMR (a+3b+9c+27d) chia hết cho 29.
CMR ( 29n+ 1). ( 29n + 2). (29n+3).(29n+4)chia hết cho 5 với mọi n
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
1.Tìm x biết: (x-2)(x2+2x+7)+2(x2-4)-5(x-2)=0
2. CMR:
a. 29-1 chia hết 73
b. 56-104 chia hết 9
c. (n+3)2-(n-1)2 chia hết cho 8 với mọi n thuộc Z
1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
CMR: 3^3n+3 - 26n chia hết cho 29 với mọi n > hoặc = 1
1)CMR với mọi n thuộc N* thì
\(3^{n+3}+2^{n+2}-3^{n+2}+2^{n+2}\)chia hết cho 6
2)CMR
\(A=4+2^2+2^3+2^4+....+2^{20}\)chia hết cho 128
3)CMR
\(2^{2^n}-1\)chia hết cho 5(n thuộc , n>=2)
4)CMR
\(2^{4^n}+4\)chia hết cho 10( n thuộc N, n>=1)
5)CMR:
\(9^{2^n}+3\)chia hết cho 2 ( n thuộc N, n>=1)
giúp mình với mình đag cần gấp lắm ạ
c.ơn mấy bạn nhiều nhé
Cho n € N. CMR:
1) Nếu n không chia hết cho 7 thì n^3+1 chia hết cho 7 hoặc n^3-1 chia hết cho 7
2) n(n^2-1)(3n+3) chia hết cho 12
3) n(n+1)(2n+1) chia hết cho 6
1) Đặt A = n6 - 1 = ( n3 - 1)( n3 + 1) = ( n - 1)( n2 + n + 1)( n +1)(n2 - n + 1)
Nếu n không chia hết cho 7 thì:
Xét nếu n = 7k + 1 thì n - 1 = 7k + 1 - 1 = 7k chia hết cho 7 nên A chia hết cho 7
Nếu n = 7k + 2 thì n2 + n + 1 = (7k + 2)2 + 7k + 2 + 1 = 7(7k2 +3k+1) chia hết cho 7 nên A chia hết cho 7
Tương tự đến trường hợp n = 7k + 6
=> Nếu n không chia hết cho 7 thì n6 - 1 chia hết cho 7
Mà n6 - 1 = (n3 - 1)(n3 + 1)
Do đó: n3 - 1 chia hết cho 7 hoặc n3 - 1 chia hết cho 7
3) n(n + 1)(2n + 1)
= n(n + 1)[(n + 2) + (n - 1)]
= n(n + 1)(n + 2) + n(n + 1)(n - 1)
Vì n(n + 1)(n + 2) là tích của ba số tự nhiên liên tiếp
Nên n(n + 1)(n + 2) chia hết cho 6 (1)
Vì n(n + 1)(n - 1) là tích của 3 số tự nhiên liên tiếp
Nên n(n + 1)(n - 1) chia hết cho 6 (2)
Từ (1), (2) => Đpcm
2)Đề sai. Sửa:
\(n\left(n^2-1\right)\left(3n+6\right)\)\(=3n\left(n-1\right)\left(n+1\right)\left(n+2\right)\)
Theo nguyên lí Dirichle, chắc chắn có 1 số chia hết cho 4.
\(\Rightarrow3n\left(n-1\right)\left(n+1\right)\left(n+2\right)⋮3⋮4=12\)
Vậy ....
Cho N=dcba . CMR :
a) N chia hết cho 4 (=) (a+2b) chia hết cho 4 .
b) N chia hết cho 16 (=) (a+2b+4c+8d) chia hết chố với b chẵn .
c) N chia hết cho 29 (=) (d+2c+9b+27a) chia hết cho 29
a) CMR: ( n^2+n-1)^2 chia hết cho 24 với mọi số nguyên n
b) CMR: n^3+6n^2 +8n chia hết cho 48 với mọi số n chẵn
c) CMR : n^4 -10n^2 +9 chia hết cho 384 với mọi số n lẻ