D= 1/1x2x3+ 1/2x3x4+.....+1/2015x2016x2017
Tính tổng sau: A = 1x2x3 + 2x3x4 + 3x4x5 + ... +2015x2016x2017
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
Ta có: \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{3\cdot4\cdot5}+...+\dfrac{1}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+...+\dfrac{2}{98\cdot99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}-\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}-\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}-\dfrac{1}{4\cdot5}+...-\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=-\dfrac{1}{2}+\dfrac{1}{99\cdot100}\)
\(\Leftrightarrow2A=\dfrac{-1}{2}+\dfrac{1}{9900}\)
\(\Leftrightarrow2A=\dfrac{-4950}{9900}+\dfrac{1}{9900}=\dfrac{-4949}{9900}\)
hay \(A=\dfrac{-4949}{19800}\)
1/1x2x3 + 1/2x3x4 + ... + 1/98x99x100
`1/(1.2.3) + 1/(2.3.4) +.....+ 1/(98.99.100)`
`2/(1.2.3) + 2/(2.3.4) + ...+ 2/(98.99.100)`
`1/(1.2) - 1/(2.3) + 1/(2.3) - 1/(3.4) + ... + 1/(98.99) - 1/(99.100)`
`1/(1.2) - 1/(99.100)`
`1/2 - 1/9900`
= `4949/9900`
1/1x2x3+1/2x3x4+1/3x4x5+...+1/89x99x100
A=1/1x2x3 +1/2x3x4 + .......+ 1/2014x2015x2016
2A = 2/1.2.3 + 2/2.3.4 +.......+ 2/2014.2015.2016
2A = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + 1/3.4 - 1/4.5 +.......+ 1/2014.2015 - 1/2015.2016
2A = 1/1.2 - 1/2015.2016
2A = ................Tự tính rồi tự làm nốt!
A=1/1x2x3+1/2x3x4+1/3x4x5+...+1/18x19x20<1/4
Ta có:
\(A=\frac{1}{1\text{x}2\text{x}3}+\frac{1}{2\text{x}3\text{x}4}+\frac{1}{3\text{x}4\text{x}5}+...+\frac{1}{18\text{x}19\text{x}20}< \frac{1}{4}\)
\(A=1-\frac{1}{2}-\frac{1}{3}+\frac{1}{2}-\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{4}-\frac{1}{4}\right)+...+\frac{1}{20}< \frac{1}{4}\)
\(A=1+\frac{1}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{1}{4}\)
\(A=\frac{19}{20}< \frac{5}{20}\)
\(A>\frac{1}{4}\)
3x - (1/1x2+1/2x3+.....+1/99x100)=1/1x2x3+1/2x3x4+......+1/18x19x20
\(\Leftrightarrow3x-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\right)\)
\(\Leftrightarrow3x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\right)=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+....+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Leftrightarrow3x-\left(1-\frac{1}{100}\right)=\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Leftrightarrow3x-\frac{99}{100}=\frac{1}{2}\cdot\frac{189}{380}\)
\(\Leftrightarrow3x-\frac{99}{100}=\frac{189}{760}\)
\(\Leftrightarrow3x=\frac{189}{760}+\frac{99}{100}=\frac{4707}{3800}\)
\(\Leftrightarrow x=\frac{1569}{3800}\)
\(\text{Vậy }x=\frac{1569}{3800}\)
Học sinh gương mẫu của lớp thầy Phú là đây
1/1x2x3+1/2x3x4+1/3x4x5+....+1/48x49x50
cho tui đáp án là dc
gấp lămm
Tính 1/1x2x3+ 1/ 2x3x4 + 1/3x4x5 + 1/ 5x6x7 + ...............+ 1/ 35x36x37
=1/2-1/3-1/4+1/3-1/4-1/5+1/5-1/6-1/7+...+1/35-1/36-1/37
giao hoán, kết hợp là ra nha