Tìm số nguyên n
n2+n+17 chia hết cho n+1
n2+25 chia hết cho n +2
3n2+5 chia hết cho 3n +1
Tìm số nguyên n để:
a) n3 – 2 chia hết cho n – 2
b) n3 – 3n2 – 3n – 1 chia hết cho n2 + n + 1
c) 5n – 2n chia hết cho 63
giúp vs ạ...
a: \(n^3-2⋮n-2\)
=>\(n^3-8+6⋮n-2\)
=>\(6⋮n-2\)
=>\(n-2\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
=>\(n\in\left\{3;1;4;0;5;-1;8;-4\right\}\)
b: \(n^3-3n^2-3n-1⋮n^2+n+1\)
=>\(n^3+n^2+n-4n^2-4n-4+3⋮n^2+n+1\)
=>\(3⋮n^2+n+1\)
=>\(n^2+n+1\in\left\{1;-1;3;-3\right\}\)
mà \(n^2+n+1=\left(n+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>=\dfrac{3}{4}\forall n\)
nên \(n^2+n+1\in\left\{1;3\right\}\)
=>\(\left[{}\begin{matrix}n^2+n+1=1\\n^2+n+1=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}n^2+n=0\\n^2+n-2=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}n\left(n+1\right)=0\\\left(n+2\right)\left(n-1\right)=0\end{matrix}\right.\Leftrightarrow n\in\left\{0;-1;-2;1\right\}\)
Tìm số nguyên n biết
1) n²+n+17 chia hết cho n+1
2) 9-n chia hết cho n-3
3) 3n +7 chia hết cho 2n+1
4) n² +25 chia hết cho n+2
5) 3n²+5 chia hết cho n-1
Làm hộ mình
3)
3n+7\(⋮2n+1\)
vì \(3n+7⋮3n+7\)
=>\(2\left(3n+7\right)⋮3n+7\)
=> 6n+7\(⋮3n+7\)
vì \(2n+1⋮2n+1\)
\(\Rightarrow3\left(2n+1\right)⋮2n+1\)
\(\Rightarrow6n+1⋮2n+1\)
\(\Rightarrow\left(6n+7\right)-\left(6n+1\right)⋮2n+1\)
\(\Rightarrow6⋮2n+1\)
đến đoạn này em chỉ cần lập bảng tìm n nữa là xong nhé
tìm n để 3n-2 chia hết cho n+4
Tìm số nguyên n, biết :
a) n+7 chia hết cho n+2
b) 9-n chia hết cho n-3
c) n^2 + n +17 chia hết cho n +1
d) n^2+25 chia hết cho n+2
e) 2n +7 chia hết cho n+1
g) 3n^2 + 5 chia hết cho n - 1
h) 3n +7 chia hết cho 2n +1
i) 2n^2 + 11 chia hết cho 3n +1
ai làm đúng mk k cho
a) \(n+7⋮n+2\)
=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)
=) \(n+7-n-2⋮n+2\)
=) \(5⋮n+2\)
=) \(n+2\inƯ\left(5\right)\)= \(\left\{+-1;+-5\right\}\)
=) \(n\in\left\{-3;-1;3;-7\right\}\)
đăng kí kênh V-I-S hộ mình nha !
b) \(9-n⋮n-3\)
=) \(\left[9-n+\left(n-3\right)\right]⋮n-3\)
=) \(9-n+n-3\)\(⋮n-3\)
=) \(6⋮n-3\)
=) \(n-3\inƯ\left(6\right)=\left\{+-1;+-2;+-3;+-6\right\}\)
=) \(n\in\left\{2;4;5;1;0;6;9;-3\right\}\)
Tìm số nguyên n
1\ n+7 chia hết cho n+2
2\ 9-n chia hết cho n-3
3\ n^2+n+17 chia hết cho n+1
4\ n^2+25 chia hết cho n+2
5\ 2n+7 chia hết cho n+1
6\ 3n+7 chia hết cho 2n+1
ta có : n+7 chia hết n+2
=> (n+2)+5 chia hết cho n+2
=> 5 chia hết n+2
=> n+2 c Ư (5) = { 1;5 }
+) n+2 = 1 => n=-1
+) n+2=5 => n=3
vậy n = -1 và n = 3
Ta có:
\(n+7⋮n+2\)
\(\Leftrightarrow\left(n+2\right)+5⋮n+2\)
Vì \(n+2⋮n+2\)
Để \(\left(n+2\right)+5⋮n+2\)
Thì \(5⋮n+2\)
\(\Rightarrow n+2\inƯ\left(5\right)=\left\{1;5\right\}\)
\(\Rightarrow\orbr{\begin{cases}n+2=1\\n+2=5\end{cases}\Rightarrow\orbr{\begin{cases}n=-1\\n=3\end{cases}}}\)
Vậy....
3,\(n^2+n+17⋮n+1\)
\(=>n.\left(n+1\right)+17⋮n+1\)
Do \(n.\left(n+1\right)⋮n+1\)
\(=>17⋮n+1\)
\(=>n+1\inƯ\left(17\right)\)
\(=>n+1\in\left\{-17;-1;1;17\right\}\)
\(=>n\in\left\{-18;-2;0;16\right\}\)
tìm số nguyên n sao cho :
1,n^2+2n-4 chia hết cho 11
2,2n^3+n^2+7n+1 chia hết cho 2n -1
3,n^4-2n^3+2n^2-2n+1 chia hết cho n^4-1
o l m . v n
4,n^3-2 chia hết cho n-2
5, n^3-3n^2-3n-1 chia hết cho n^2+n+1
6, 5^n-2^n chia hết cho 63
Tìm số nguyên n biết
1) 3n+7 chia hết cho 2 n+1
2) n²+25 chia hết cho n+2
3) 3n²+5 chia hết cho n-1
Ai là đúng nhất thì mình sẽ tịck cho
1) Để \(3n+7⋮2n+1\) \(\Leftrightarrow\)\(2.\left(3n+7\right)⋮2n+1\)
- Ta có: \(2.\left(3n+7\right)=6n+14=\left(6n+3\right)+11=3.\left(2n+1\right)+11\)
- Để \(2.\left(3n+7\right)⋮2n+1\)\(\Rightarrow\)\(3.\left(2n+1\right)+11⋮2n+1\)mà \(3.\left(2n+1\right)⋮2n+1\)
\(\Rightarrow\)\(11⋮2n+1\)\(\Rightarrow\)\(2n+1\inƯ\left(11\right)\in\left\{\pm1;\pm11\right\}\)
- Ta có bảng giá trị:
\(2n+1\) | \(-1\) | \(1\) | \(-11\) | \(11\) |
\(n\) | \(-1\) | \(0\) | \(-6\) | \(5\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-6,-1,0,5\right\}\)
2) Ta có: \(n^2+25=\left(n^2-4\right)+29=\left(n+2\right).\left(n-2\right)+29\)
- Để \(n^2+25⋮n+2\)\(\Rightarrow\)\(\left(n+2\right).\left(n-2\right)+29⋮n+2\)mà \(\left(n+2\right).\left(n-2\right)⋮n+2\)
\(\Rightarrow\)\(29⋮n+2\)\(\Rightarrow n+2\inƯ\left(29\right)\in\left\{\pm1;\pm29\right\}\)
- Ta có bảng giá trị:
\(n+2\) | \(-1\) | \(1\) | \(-29\) | \(29\) |
\(n\) | \(-3\) | \(-1\) | \(-31\) | \(27\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-31,-3,-1,27\right\}\)
3) Ta có: \(3n^2+5=\left(3n^2-3\right)+8=3.\left(n+1\right).\left(n-1\right)+8\)
- Để \(3n^2+5⋮n-1\)\(\Rightarrow\)\(3.\left(n+1\right).\left(n-1\right)+8⋮n-1\)mà \(3.\left(n+1\right).\left(n-1\right)⋮n-1\)
\(\Rightarrow\)\(8⋮n-1\)\(\Rightarrow n-1\inƯ\left(8\right)\in\left\{\pm1;\pm2;\pm4;\pm8\right\}\)
- Ta có bảng giá trị:
\(n-1\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-4\) | \(4\) | \(-8\) | \(8\) |
\(n\) | \(0\) | \(2\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-7\) | \(9\) |
\(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) | \(\left(TM\right)\) |
Vậy \(n\in\left\{-7,-3,-1,0,2,3,5,9\right\}\)
2n+7chia hết cho n+1
3n+7chia hết cho 2n+1
n^2+n+17 chia hết cho n+1
n^2+25 chia hết cho n+2
3n^2+5 chia hết cho n-1
2n^2+11 chia hết cho 3n+1
a) 3n+7 chia hết cho 2n+1
b) n^2+n+17 chia hết cho n+1
c) n^2+25 chia het cho n+2
d) 3n^2+5 chia hết cho n-1
e) 2n^2+11 chia het cho 3n+1
1, tìm số nguyên n biết
a, n+3 chia hết cho n-1
b, 2n-1 chia hết cho n+2
2, tìm số nguyên n sao cho
a, 3n+2 chia hết cho n-1
b, 3n+24 chia hết cho n-4
c, n^2+5 chia hết cho n+1