Những câu hỏi liên quan
ND
Xem chi tiết
MT
6 tháng 5 2016 lúc 20:45

P(x)=4x^2+4x-3=4x2+2x+2x+1-4

=2x.(2x+1)+(2x+1)-4

=(2x+1)(2x+1)-4

=(2x+1)2-4 \(\ge\)-4

Vậy GTNN của P(x) là -4 tại x=-1/2

Bình luận (0)
TO
Xem chi tiết
NM
Xem chi tiết
MN
Xem chi tiết
H24
18 tháng 5 2016 lúc 20:16

GTNN là 4

Bình luận (0)
HP
18 tháng 5 2016 lúc 20:36

x-y=2

=>x=y+2

Thay x=y+2 vào Q,ta đc:

\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)

\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)

\(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)

=>GTNN của Q là 3

Dấu "=" xảy ra <=> y+1=0<=>y=-1

Vậy.............

Bình luận (0)
H24
18 tháng 5 2016 lúc 20:38

x-y=2=> x=2+y

Q=xy+4=(2+y)y+4=2y+y^2+4

ta có y^2>/0=> 2y+y^2>/0=> 2y+y^2+4>/4

vậy Min Q là 4

Bình luận (0)
TD
Xem chi tiết
NT
25 tháng 7 2021 lúc 20:06

\(F=-x^2-4x+20=-\left(x^2+4x-20\right)\)

\(=-\left(x^2+4x+4-24\right)=-\left(x+2\right)^2+24\le24\)

Dấu ''='' xảy ra khi x = -2

Vậy GTLN F là 24 khi x = -2 

Bình luận (0)
NT
25 tháng 7 2021 lúc 20:31

Ta có: \(F=-x^2-4x+20\)

\(=-\left(x^2+4x-20\right)\)

\(=-\left(x^2+4x+4-24\right)\)

\(=-\left(x+2\right)^2+24\le24\forall x\)

Dấu '=' xảy ra khi x=-2

Bình luận (0)
DV
Xem chi tiết
CD
Xem chi tiết
ND
8 tháng 11 2015 lúc 15:58

\(M=\left(x^2+4x+4\right)+1=\left(x+2\right)^2+1\ge0+1=1\)

\(Mmin=1\) khi x+2 = 0 => x = -2

Bình luận (0)
PK
8 tháng 11 2015 lúc 15:59

M=x2 +4x +5

=>M=x(x+4)+5

Ta có:

x(x+4) lớn hơn hoặc bằng 0

=>x(x+4)+5 lớn hơn hoặc bằng 5

=>M lớn hơn hoặc bằng 5

Dấu "=" xảy ra <=> x = 0 hoặc x+4=0 => x= - 4

Vậy M đạt GTNN là 5 <=> x=0 hoặc x= -4

 

Bình luận (0)
NT
Xem chi tiết
H24
22 tháng 12 2016 lúc 21:41

\(ax^2+a=3-4x\Leftrightarrow ax^2+4x+a-3=0\left(1\right)\)

tìm  tiềm kiện để (1) có nghiệm

a=0=>có nghiệm x=3/4 với a khác không

\(2^2-a\left(a-3\right)\ge0\)

\(\Leftrightarrow a^2-3a-4\le0\)\(\Rightarrow-1\le a\le4\)

GTLN A=\(4\)

Bình luận (0)
HP
22 tháng 12 2016 lúc 22:15

A=(3-4x)/(x^2+1)

ta có 4-A=4-(3-4x)/(x^2+1)

=[4(x^2+1)-3+4x]/(x^2+1)

=(4x^2+4-3+4x)/(x^2+1)=(4x^2+4x+1)/(x^2+1)

=(2x+1)^2/(x^2+1) >= 0 với mọi x

=>A=4-(2x+1)^2/(x^2+1) <= 4 với mọi x 

Vậy maxA=4 ,dấu "=" xảy ra khi x=-1/2

Bình luận (0)
HN
Xem chi tiết
MP
16 tháng 8 2017 lúc 16:55

ta có : \(A=x^2-2x+y^2-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

ta có : \(\left(x-1\right)^2\ge0\) với mọi \(x\)\(\left(y-2\right)^2\ge0\) với mọi \(y\)

\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) với mọi \(x;y\)

\(\Rightarrow\) GTNN của \(A\) là 1 khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

vậy giá trị nhỏ nhất của \(A\) là 1 khi \(x=1;y=2\)

Bình luận (0)
H24
16 tháng 8 2017 lúc 16:55

A = \(x^2-2x+y^2-4y+6=x^2-2x+1+y^2-4y+4+1=\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

Dấu ''='' xảy ra khi \(\left\{{}\begin{matrix}x-1=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy GTNN của A là 1 khi x = 1 và y = 2

Bình luận (0)
DH
16 tháng 8 2017 lúc 16:55

\(A=x^2-2x+y^2-4y+6\)

\(A=x^2-x-x+1+y^2-2y-2y+4+1\)

\(A=\left(x-1\right)^2+\left(y-2\right)^2+1\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\)

hay \(A\ge1\) với mọi giá trị của \(x;y\in R\)

Để \(A=1\) thì \(\left(x-1\right)^2+\left(y-2\right)^2+1=1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Vậy.....................

Chúc bạn học tốt!!!

Bình luận (0)