Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
PT
Xem chi tiết
AH
5 tháng 2 2024 lúc 18:04

Bài 1:

a. $2^{29}< 5^{29}< 5^{39}$

$\Rightarrow A< B$

b.

$B=(3^1+3^2)+(3^3+3^4)+(3^5+3^6)+...+(3^{2009}+3^{2010})$

$=3(1+3)+3^3(1+3)+3^5(1+3)+...+3^{2009}(1+3)$

$=(1+3)(3+3^3+3^5+...+3^{2009})$

$=4(3+3^3+3^5+...+3^{2009})\vdots 4$

Mặt khác:

$B=(3+3^2+3^3)+(3^4+3^5+3^6)+....+(3^{2008}+3^{2009}+3^{2010})$

$=3(1+3+3^2)+3^4(1+3+3^2)+...+3^{2008}(1+3+3^2)$

$=(1+3+3^2)(3+3^4+....+3^{2008})=13(3+3^4+...+3^{2008})\vdots 13$

Bình luận (0)
AH
5 tháng 2 2024 lúc 18:05

Bài 1:
c.

$A=1-3+3^2-3^3+3^4-...+3^{98}-3^{99}+3^{100}$

$3A=3-3^2+3^3-3^4+3^5-...+3^{99}-3^{100}+3^{101}$

$\Rightarrow A+3A=3^{101}+1$
$\Rightarrow 4A=3^{101}+1$

$\Rightarrow A=\frac{3^{101}+1}{4}$

Bình luận (0)
AH
5 tháng 2 2024 lúc 18:06

Bài 2:

a. $7\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 7; -7\right\}$

$\Rightarrow n\in \left\{0; -2; 6; -8\right\}$

b.

$2n+5\vdots n+1$
$\Rightarrow 2(n+1)+3\vdots n+1$

$\Rightarrow 3\vdots n+1$

$\Rightarrow n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -2; 2; -4\right\}$

Bình luận (0)
Xem chi tiết
H24

xin lỗi bài trên của mình làm sai

Bình luận (0)
H24

Ta có: 3A = 3.(1+3+32+33+...+399+3100) 

3A = 3+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−1

⇒ A = 3101−1

             2               

Vậy A = 3101−1

                 2           

                           

Bình luận (0)
H24
13 tháng 6 2019 lúc 15:34

em den lam

Bình luận (0)
NC
Xem chi tiết
NN
Xem chi tiết
H24
9 tháng 10 2023 lúc 21:32

\(A=1+3^2+3^4+...+3^{98}+3^{100}\)

\(3^2\cdot A=3^2+3^4+3^6+...+3^{100}+3^{102}\)

\(9A-A=\left(3^2+3^4+3^6+...+3^{100}+3^{102}\right)-\left(1+3^2+3^4+...+3^{98}+3^{100}\right)\)

\(8A=3^{102}-1\)

\(\Rightarrow A=\dfrac{3^{102}-1}{8}\)

Bình luận (0)
DP
9 tháng 10 2023 lúc 21:45

A = 1 + 32 + 34 + ..... + 398 + 3100
3A = 3. ( 1 + 32 + 34 + ..... + 398 + 3100 )
3A = 3. 1 + 3. 32 + 3. 34 + ..... + 3. 398 + 3. 3100
3A = 32 + 33 + 34 + ..... + 3100 + 3101
3A - A = ( 32 + 33 + 34 + ..... + 3100 + 3101 ) - ( 1 + 32 + 34 + ..... + 398 + 3100 )
2A = 3101 - 1
A = ( 3101 - 1 ) : 2

Bình luận (0)
NN
Xem chi tiết
AH
9 tháng 10 2023 lúc 23:30

Lời giải:

$A=1+32+34+....+398+400$

Từ $32$ đến $400$ có số số hạng là:

$(400-32):2+1=185$ (số hạng)

$32+34+....+398+400=(400+32).185:2=39960$

$\Rightarrow A=1+39960=39961$

Bình luận (0)
KJ
Xem chi tiết
H24
13 tháng 12 2021 lúc 23:05

Tham khảo

Ta có: 3A = 3.(1+3+32+33+...+399+3100)(1+3+32+33+...+399+3100)

3A = 3+32+33+...+3100+31013+32+33+...+3100+3101

Suy ra: 3A – A = (3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)(3+32+33+...+3100+3101)−(1+3+32+33+...+399+3100)

2A = 3101−13101−1

⇒⇒ A = 3101−123101−12

Vậy A = 3101−12

Bình luận (0)
KJ
Xem chi tiết
NH
15 tháng 12 2021 lúc 13:32

 

A=3 mũ 101-1 phân số2

 

 

 

 

 

Bình luận (3)
LN
16 tháng 12 2021 lúc 14:07

\(A=1-3+3^2-3^3+3^4-...-3^{98}-3^{99}+3^{100}\\ 3A=3-3^2+3^3-3^4-...-3^{98}+3^{99}-3^{100}+3^{101}\\ 3A-A=3^{101}-1\\ \Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bình luận (2)
PT
Xem chi tiết
NH
26 tháng 12 2023 lúc 22:59

Bình luận (0)
NH
Xem chi tiết
NL
5 tháng 3 2021 lúc 17:58

\(A=1+3^2+3^4+...+3^{102}\)

\(9A=3^2+3^4+...+3^{102}+3^{104}\)

\(\Rightarrow9A-A=3^{104}-1\)

\(\Rightarrow8A=3^{104}-1\)

\(\Rightarrow A=\dfrac{3^{104}-1}{8}\)

Bình luận (0)
LL
Xem chi tiết
NT
27 tháng 9 2021 lúc 21:15

a: \(A=2019\cdot2021=2020^2-1\)

\(B=2020^2\)

Do đó: A<B

Bình luận (0)
HO
10 tháng 10 2021 lúc 20:32
Fhzhizuu8zìtcùbìgìvìg⁸fu7fdjhtvfghhhujfghfhgkffztdhcvvgoh. Gtvguvvhhvhvzcgctv
Bình luận (0)
 Khách vãng lai đã xóa