a) 2n+5 chia hết cho n-19
b) 3n+7 chia hết cho 2n-11
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
a) 2n+11 chia hết cho n+3
b) n+5 chia hết cho n-1
c) 3n+10 chia hết cho n+2
d) 2n+7 chia hết cho 2n+1
Mọi người giúp em nha
a) 2n + 11 chia hết cho n + 3
⇒ 2n + 6 + 5 chia hết cho n + 3
⇒ 2(n + 3) + 5 chia hết cho n + 3
⇒ 5 chia hết cho n + 3
⇒ n + 3 ∈ Ư(5) = {1; -1; 5; -5}
⇒ n ∈ {-2; -4; 2; -8}
b) n + 5 chia hết cho n - 1
⇒ n - 1 + 6 chia hết cho n - 1
⇒ 6 chia hết cho n - 1
⇒ n - 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
⇒ n ∈ {2; 0; 3; -1; 4; -2; 7; -5}
c) 3n + 10 chia hết cho n + 2
⇒ 3n + 6 + 4 chia hết cho n + 2
⇒ 3(n + 2) + 4 chia hết cho n + 2
⇒ 4 chia hết cho n + 2
⇒ n + 2 ∈ Ư(4) = {1; -1; 2; -2; 4; -4}
⇒ n ∈ {-1; -3; 0; -4; 2; -6}
d) 2n + 7 chia hết cho 2n + 1
⇒ 2n + 1 + 6 chia hết cho 2n + 1
⇒ 6 chia hết cho 2n + 1
⇒ 2n + 1 ∈ Ư(6) = {1; -1; 2; -2; 3; -3; 6; -6}
Mà: n ∈ N ⇒ 2n + 1 là số lẻ
⇒ 2n + 1 ∈ {1; -1; 3; -3}
⇒ n ∈ {0; -1; 1; -2}
Tìm n E N để
a) 2n + 1 chia hết co 6 - n
b) 2n + 2 chia hết cho 2n - 1
c) 4n - 5 chia hết cho 2n - 1
d) n\(^2\)+ 2n + 7 chia hết cho n + 2
e) n^2 + 1 chia hết cho n - 1
f) 3n + 1 chia hết cho 11 - 2n
h) 3n - 6 chia hết cho 2n - 1
Tìm n thuộc Z biết :
a)n+7 chia hết cho n+2
b) 3n+7 chia hết cho 2n+1
c)n^2+25 chia hết cho n+2
d)3n^2+5 chia hết cho n-1
e)2n^2+11 chia hết cho 3n+1
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
a) 3n+7 chia hết cho 2n+1
b) n^2+n+17 chia hết cho n+1
c) n^2+25 chia het cho n+2
d) 3n^2+5 chia hết cho n-1
e) 2n^2+11 chia het cho 3n+1
Tìm số nguyên n, biết :
a) n+7 chia hết cho n+2
b) 9-n chia hết cho n-3
c) n^2 + n +17 chia hết cho n +1
d) n^2+25 chia hết cho n+2
e) 2n +7 chia hết cho n+1
g) 3n^2 + 5 chia hết cho n - 1
h) 3n +7 chia hết cho 2n +1
i) 2n^2 + 11 chia hết cho 3n +1
ai làm đúng mk k cho
a) \(n+7⋮n+2\)
=) \(\left[n+7-\left(n+2\right)\right]⋮n+2\)
=) \(n+7-n-2⋮n+2\)
=) \(5⋮n+2\)
=) \(n+2\inƯ\left(5\right)\)= \(\left\{+-1;+-5\right\}\)
=) \(n\in\left\{-3;-1;3;-7\right\}\)
đăng kí kênh V-I-S hộ mình nha !
b) \(9-n⋮n-3\)
=) \(\left[9-n+\left(n-3\right)\right]⋮n-3\)
=) \(9-n+n-3\)\(⋮n-3\)
=) \(6⋮n-3\)
=) \(n-3\inƯ\left(6\right)=\left\{+-1;+-2;+-3;+-6\right\}\)
=) \(n\in\left\{2;4;5;1;0;6;9;-3\right\}\)
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)
Bài 1: Tìm n:
a, 2n + 1 chia hết cho (6n - 1)
b, 3n chia hết cho (5 - 2n)
c, 4n + 3 chia hết cho (2n + 6)
d, (n - 1) chia hết cho 11
e, (n + 11) chia hết cho (n - 1)
g, (3n + 24) chia hết cho (n - 4)
h, 7n chia hết cho (n-3)
Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.
cậu nên đăng lần lượt thôi thì bọn tớ mới làm
a) 2n-1 chia hết cho n+1
b) 2n+5 chia hết cho n-1
c) n-6 chia hết cho 2-n
d) 2n+3 chia hết cho 1-n
e) 3n+1 chia hết cho 11-2n
a) 2n - 1 chia hết cho n + 1
=> 2n + 2 - 3 chai hết cho n + 1
=> 2.(n + 1) - 3 chia hết cho n + 1
=> 3 chai hết cho n + 1
=> n + 1 thuộc Ư(3) = {-1;1-3;3}
=> n = {-2;0;-4;2}
2n-1 chia hết cho n+1
=>2(n+1)-3 chia hết n+1
=>3 chia hết cho n-1
=>n-1 thuộc Ư(3)={1;3;-1;-3}
Với n-1=1 =>n=2
Với n-1=3 =>n=4 (loại)
Với n-1=(-1) =>n=0
Với Với n-1=(-3) =>n=(-2)
bài 1: tìm n thuộc z để
1) n+7 chia hết cho n+3
2) 2n+5 chia hết cho n+3
3) 3n+1 chia hết cho 1-2n
4) 3n+2 chia hết cho 11-5n
#)Giải :
1) \(\frac{n+7}{n+3}=\frac{n+3+4}{n+3}=\frac{n+3}{n+3}+\frac{4}{n+3}=1+\frac{4}{n+3}\)
\(\Rightarrow n+3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Lập bảng xét các Ư(4) rồi chọn ra các gt thỏa mãn
a) Ta có: n + 7 = (n + 3) + 4
Do n + 3 \(⋮\)n + 3 => 4 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(4) = {1; -1; 2; -2; 4; -4}
Lập bảng :
n + 3 | 1 | -1 | 2 | -2 | 4 | -4 |
n | -2 | -4 | -1 | -5 | 1 | -7 |
Vậy ...
b) Ta có: 2n + 5 = 2(n + 3) - 1
Do 2(n + 3) \(⋮\)n + 3 => 1 \(⋮\)n + 3
=> n + 3 \(\in\)Ư(1) = {1; -1}
Với: n + 3 = 1 => n = 1 - 3 = -2
n + 3 = -1 => n= -1 - 3 = -4
Vậy ...
3) Đặt A = 3n + 1
=> 2A = 6n + 2 = -3(1 - 2n) + 5
Để A = 3n + 1 \(⋮\)1 - 2n <=> 2A \(⋮\)1 - 2n
Do -3(1 - 2n) \(⋮\)1 - 2n => 5 \(⋮\)1 - 2n
=> 1 - 2n \(\in\)Ư(5) = {1; -1; 5; -5}
Với: +)1 - 2n = 1 => 2n = 0 => n = 0
+)1 - 2n = -1 => 2n = 2 => n = 1
+) 1 - 2n = 5=> 2n = -4 => n = -2
+) 1 - 2n = -5 => 2n = 6 => n = 3
3) Đặt B = 3n + 2
=> 5B = 15n + 10 = -3(11 - 5n) + 21
Để B = 3n + 2 \(⋮\)11 - 5n <=> 5B \(⋮\)11 - 5n
Do -3(11 - 5n) \(⋮\)11 - 5n => 21 \(⋮\)11 - 5n
=> 11 - 5n \(\in\)Ư(21) = {1; -1; 3; -3; 7; -7; 21; -21}
Lập bảng :
11-5n | 1 | -1 | 3 | -3 | 7 | -7 | 21 | -21 |
n | 2 | 12/5(ktm) | 8/5(ktm) | 14/5(ktm) | 4/5(ktm) | 18/5(ktm) | -2 | 32(ktm) |
Vậy ...