Những câu hỏi liên quan
AA
Xem chi tiết
TN
Xem chi tiết
QL
Xem chi tiết
HM
30 tháng 9 2023 lúc 23:54

a) Khoảng cách từ điểm A đến đường thẳng \(\Delta \) là: \(d\left( {A,\Delta } \right) = \frac{{\left| {0 - 2 - 4} \right|}}{{\sqrt {{1^2} + {1^2}} }} = 3\sqrt 2 \).

b) Ta có: \(\overrightarrow {{n_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\). Phương trình đường thẳng a là:

\(1\left( {x + 1} \right) + 1\left( {y - 0} \right) = 0 \Leftrightarrow x + y + 1 = 0\)

c) Ta có: \(\overrightarrow {{u_a}}  = \overrightarrow {{n_\Delta }}  = \left( {1;1} \right)\).Từ đó suy ra \(\overrightarrow {{n_b}}  = \left( {1; - 1} \right)\). Phương trình đường thẳng b là:

\(1\left( {x - 0} \right) - 1\left( {y - 3} \right) = 0 \Leftrightarrow x - y + 3 = 0\)

Bình luận (0)
TN
Xem chi tiết
ND
Xem chi tiết
LP
20 tháng 11 2021 lúc 7:01

a) Gọi đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=a'x+b'\)

Vì \(\left(d'\right)//\left(d\right)\Rightarrow a'=2\)

Vậy phương trình đường thẳng (d') có dạng \(\left(d'\right):y=2x+b'\)

Mặt khác (d') đi qua M(3;4) nên điểm M(3;4) thuộc \(\left(d'\right):y=2x+b'\)

Thay \(x=3;y=4\)vào hàm số \(y=2x+b'\)ta có:

\(4=2.3+b'\Leftrightarrow b'=-2\)

Vậy phương trình đường thẳng đi qua M(3;4) và song song với \(\left(d\right):y=2x+6\)là \(\left(d'\right):y=2x-2\)

b) Gọi OH là khoảng cách từ O đến (d). Gọi giao điểm của (d):y = 2x + 6 với hai trục Ox, Oy lần lượt là A(xA;0), B(0;yB).

Thay x = xA; y = 0 vào hàm số y = 2x + 6, ta có: \(0=2x_A+6\Leftrightarrow x_A=-3\)

Thay x = 0; y = yB vào hàm số y = 2x + 6, ta có: \(y_B=2.0+6=6\)

Vì \(OA=\left|x_A\right|;OB=\left|y_B\right|\)\(\Rightarrow OA=\left|-3\right|=3;OB=\left|6\right|=6\)

\(\Delta OAB\)vuông tại O, đường cao OH \(\Rightarrow\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\left(htl\right)\)

Rồi bạn thay OA, OB vào và dễ dàng tính được OH

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
QL
Xem chi tiết
HM
27 tháng 9 2023 lúc 0:04

a) Ta có: \(\overrightarrow {AB}  = \left( {10;5} \right),\overrightarrow {AC}  = \left( {6; - 4} \right),\overrightarrow {BC}  = \left( { - 4; - 9} \right)\)

+) Đường thẳng AB nhận vectơ \(\overrightarrow {AB}  = \left( {10;5} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 1 + 10t\\y = 1 + 5t\end{array} \right.\)

+) Đường thẳng AC nhận vectơ \(\overrightarrow {AC}  = \left( {6; - 4} \right)\)làm phương trình chỉ phương và đi qua điểm \(A( - 1;1)\)nên có phương trình tham số là: \(\left\{ \begin{array}{l}x =  - 1 + 6t\\y = 1 - 4t\end{array} \right.\)

+) Đường thẳng BC nhận vectơ \(\overrightarrow {BC}  = \left( { - 4; - 9} \right)\)làm phương trình chỉ phương và đi qua điểm \(B\left( {9;6} \right)\)nên có phương trình tham số là:      \(\left\{ \begin{array}{l}x = 9 - 4t\\y = 6 - 9t\end{array} \right.\)

b) Ta có vectơ pháp tuyến của hai đường thẳng AB và AC lần lượt là: \(\overrightarrow {{n_1}}  = \left( {1; - 2} \right),\overrightarrow {{n_2}}  = \left( {2;3} \right)\)

\(\cos \left( {AB,AC} \right) = \cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\left| {1.2 + \left( { - 2} \right).3} \right|}}{{\sqrt {{1^2} + {{\left( { - 2} \right)}^2}} \sqrt {{2^2} + {3^2}} }} = \frac{{4\sqrt {65} }}{{65}} \Rightarrow \left( {AB,AC} \right) = 60^\circ 15'\)

Vậy góc giữa hai đường thẳng AB và AC là \(60^\circ 15'\)

c) Đường thẳng BC nhận vectơ \(\overrightarrow {BC}  = \left( { - 4; - 9} \right)\) làm vectơ chỉ phương nên có vectơ pháp tuyến là \(\overrightarrow n  = \left( {9; - 4} \right)\) và đi qua \(B\left( {9;6} \right)\), suy ra phương trình tổng quát của đường thẳng BC là:

\(9.\left( {x - 9} \right) - 4\left( {y - 6} \right) = 0 \Leftrightarrow 9x - 4y - 57 = 0\)

Khoảng cách từ \(A( - 1;1)\) đến đường thẳng BC là:

\(d\left( {A,BC} \right) = \frac{{\left| {9.\left( { - 1} \right) - 4.1 - 57} \right|}}{{\sqrt {{9^2} + {{\left( { - 4} \right)}^2}} }} = \frac{{70\sqrt {97} }}{{97}}\)

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 12 2023 lúc 7:29

a: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)

Vì (d)//y=3x+2 nên \(\left\{{}\begin{matrix}a=3\\b\ne2\end{matrix}\right.\)

Vậy: (d): y=3x+b

Thay x=1 và y=2 vào (d), ta được:

\(b+3\cdot1=2\)

=>b+3=2

=>b=-1

vậy: (d): y=3x-1

b: Gọi phương trình đường thẳng cần tìm là (d): y=ax+b(a<>0)
Vì (d) có tung độ gốc là 3 nên b=3

=>(d): y=ax+3

Thay x=-4 và y=7 vào (d), ta được:

\(-4a+3=7\)

=>-4a=4

=>a=-1

vậy: (d): y=-x+3

c: A(1;4); B(4;8)

=>\(AB=\sqrt{\left(4-1\right)^2+\left(8-4\right)^2}\)

=>\(AB=\sqrt{3^2+4^2}=\sqrt{25}=5\)

c: y=2x-6

=>2x-y-6=0

Khoảng cách từ A(-3;2) đến đường thẳng 2x-y-6=0 là;

\(d\left(A;2x-y-6=0\right)=\dfrac{\left|\left(-3\right)\cdot2+2\left(-1\right)-6\right|}{\sqrt{2^2+\left(-1\right)^2}}\)

\(=\dfrac{\left|-6-2-6\right|}{\sqrt{5}}=\dfrac{14}{\sqrt{5}}\)

Bình luận (0)
QL
Xem chi tiết
HM
29 tháng 9 2023 lúc 23:59

a) Khoảng cách từ gốc tọa độ \(O\left( {0;0} \right)\) đến điểm \(M\left( {3;4} \right)\) trong mặt phẳng tọa độ Oxy là:

\(OM = \left| {\overrightarrow {OM} } \right| = \sqrt {{3^2} + {4^2}}  = 5\)

b) Với hai điểm I(a; b) và M(x ; y) trong mặt phẳng toạ độ Oxy, ta có:\(IM = \sqrt {{{\left( {x - a} \right)}^2} + {{\left( {y - b} \right)}^2}} \)

Bình luận (0)