Những câu hỏi liên quan
GC
Xem chi tiết
BT
Xem chi tiết
ND
Xem chi tiết
LA
Xem chi tiết
CH
28 tháng 2 2018 lúc 10:12

a) Xét tam giác AHD và tam giác ABH có:

Góc A chung

\(\widehat{ADH}=\widehat{AHB}\left(=90^o\right)\)

\(\Rightarrow\Delta AHD\sim\Delta ABH\left(g-g\right)\)

\(\Rightarrow\frac{AH}{AB}=\frac{AD}{AH}\Rightarrow AH^2=AB.AD\)

b) Ta có tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

Vậy thì \(\widehat{DHA}=\widehat{DEA}\) 

Lại có \(\widehat{DHA}=\widehat{CBA}\) nên \(\widehat{DEA}=\widehat{CBA}\)

Suy ra \(\Delta ADE\sim\Delta ACB\left(g-g\right)\)

c) Gọi I là giao điểm của AO và DE.

Xét tam giác vuông ABC có AO là trung tuyến ứng với cạnh huyền nên OA = OC  hay \(\widehat{OAC}=\widehat{OCA}\)

Lại có  \(\widehat{AED}=\widehat{ABC}\)  nên \(\widehat{OAC}+\widehat{DEA}=\widehat{OCA}+\widehat{ABC}=90^o\)

Suy ra \(\widehat{AIE}=90^o\) hay \(AO\perp DE\)

d) Ta có do \(AO\perp DE\) nên:

\(S_{ADOE}=\frac{1}{2}DE.OA=\frac{1}{2}AH.\frac{BC}{2}=\frac{1}{2}a.AH\)

Vậy thì \(S_{ADOE}\) lớn nhất khi AH lớn nhất.

Xét tam giác vuông ABC, ta có

 \(BC.AH=AB.AC\le\frac{AB^2+AC^2}{2}=\frac{BC^2}{2}=2a^2\)

\(\Rightarrow AH\le a\)

Vậy AH lớn nhất khi AH = a tức là tam giác ABC vuông cân tại A.

Bình luận (0)
NB
Xem chi tiết
NT
18 tháng 5 2023 lúc 22:33

PTHĐGĐ là:

x^2-2x-3=0

=>x=3 hoặc x=-1

=>A(3;9); B(-1;1)

(d')//(d)

=>(d'): y=2x+b

PTHĐGD là:

x^2-2x-b=0

Δ=(-2)^2-4*1*(-b)=4b+4

Để (P) tiếp xúc (d') thì 4b+4=0

=>b=-1

=>y=2x-1

Tiếp điểm là C(1;1)

=>3x+5y=8

Bình luận (0)
NN
Xem chi tiết
NN
Xem chi tiết
NN
3 tháng 9 2020 lúc 3:40

giúp e với ạ e đang cần gấp

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
AN
13 tháng 1 2017 lúc 6:22

Ta có:

\(a+b+c+ab+bc+ca\ge6\sqrt[6]{a.b.c.ab.bc.ca}\)

\(=6\sqrt[6]{a^3b^3c^3}\)

\(\Rightarrow6\ge6\sqrt{abc}\)

\(\Rightarrow1\ge\sqrt{abc}\)

\(\Rightarrow1\ge abc\)

Vậy GTLN là 1 đạt được khi a = b = c = 1

Bình luận (0)
NN
13 tháng 1 2017 lúc 12:05

cảm ơn c nhé albaba nguyễn

Bình luận (0)
HK
Xem chi tiết
H24
Xem chi tiết