Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 9 2023 lúc 22:52

\(a,P=5x\left(2-x\right)-\left(x+1\right)\left(x+9\right)\)

\(=10x-5x^2-\left(x^2+x+9x+9\right)\)

\(=10x-5x^2-x^2-x-9x-9\)

\(=\left(10x-x-9x\right)+\left(-5x^2-x^2\right)-9\)

\(=-6x^2-9\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow-6x^2\le0\forall x\)

\(\Rightarrow-6x^2-9\le-9< 0\forall x\)

hay \(P\) luôn nhận giá trị âm với mọi giá trị của biến \(x\).

\(b,Q=3x^2+x\left(x-4y\right)-2x\left(6-2y\right)+12x+1\)

\(=3x^2+x^2-4xy-12x+4xy+12x+1\)

\(=\left(3x^2+x^2\right)+\left(-4xy+4xy\right)+\left(-12x+12x\right)+1\)

\(=4x^2+1\)

Ta thấy: \(x^2\ge0\forall x\)

\(\Rightarrow4x^2\ge0\forall x\)

\(\Rightarrow4x^2+1\ge1>0\forall x\)

hay \(Q\) luôn nhận giá trị dương với mọi giá trị của biến \(x\) và \(y\).

#\(Toru\)

Bình luận (0)
KR
Xem chi tiết
PB
Xem chi tiết
CT
27 tháng 9 2018 lúc 5:43

a) Rút gọn E Þ đpcm.

b) Điều kiện xác định E là: x ≠    ± 1  

Rút gọn F ta thu được F = 4 Þ đpcm

Bình luận (0)
NA
Xem chi tiết
NT
7 tháng 10 2021 lúc 22:02

a: \(x^2-5x+10\)

\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{15}{4}\)

\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{15}{4}>0\forall x\)

b: \(2x^2+8x+15\)

\(=2\left(x^2+4x+\dfrac{15}{2}\right)\)

\(=2\left(x^2+4x+4+\dfrac{7}{2}\right)\)

\(=2\left(x+2\right)^2+7>0\forall x\)

Bình luận (1)
H24
Xem chi tiết
KT
Xem chi tiết
H24
16 tháng 9 2018 lúc 18:56

-11 - ( x - 1 ) *( x - 2 )

= -11 - ( x^2 - 2x - x + 2 )

= - 11 - x^2 + 2x + x - 2

= -11 - x^2 + 3x - 2

= - 13 - x^2 + 3x

Với x < 3
=> x^2 < I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Với x = 3 hoặc x = -3
=> x^2 = I 3x I < I - 13 I
=> -13 - x^2 + 3x luôn âm
Tương tự với x > 3
Vậy -11 - ( x - 1 )( x - 2 ) luôn âm với mọi x

Bình luận (0)
HN
Xem chi tiết
H24
Xem chi tiết
KR
28 tháng 9 2023 lúc 22:00

`#3107.\text {DN}`

a)

\((2x-3)^2-x(3-x)+5x-4x^2+17\)

`= 4x^2 - 12x + 9 - 3x + x^2 + 5x - 4x^2 + 17`

`= x^2 - 10x + 26`

b)

`M = x^2 - 10x + 26`

`= [(x)^2 - 2*x*5 + 5^2] + 1`

`= (x - 5)^2 + 1`

Vì `(x - 5)^2 \ge 0` `AA` `x => (x - 5)^2 + 1 \ge 1` `AA` `x`

Vậy, giá trị biểu thức M luôn có giá trị dương với mọi x.

Bình luận (0)
BP
Xem chi tiết
ND
24 tháng 7 2018 lúc 10:29

\(D=-x^2-y^2+2x+2y-3\)

\(D=-\left(x^2-2x+1\right)-\left(y^2-2y+1\right)-1\)

\(D=-\left(x-1\right)^2-\left(y-1\right)^2-1\)

Ta thấy \(-\left(x-1\right)^2< 0;-\left(y-1\right)^2< 0\forall x;y\). Mà -1 < 0

\(\Rightarrow-\left(x-1\right)^2-\left(y-1\right)^2-1< 0\forall x;y\)\(\Rightarrow D< 0\forall x;y\)(đpcm).

Bình luận (0)
CS
Xem chi tiết
CS
29 tháng 3 2020 lúc 22:41

cảm ơn các bạn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:20

\(-\frac{1}{4}x^2+x-2\)

\(=-\left(\frac{1}{4}x^2-2\cdot\frac{1}{2}x+1\right)-1\)

\(=-\left(\frac{1}{2}x-1\right)^2-1\)

Do \(\left(\frac{1}{2}x-1\right)^2\ge0\Rightarrow-\left(\frac{1}{2}x-1\right)^2\le0\Rightarrow-\left(\frac{1}{2}x-1\right)^2-1< 0\)

Vậy \(\left(-\frac{1}{4}\right)x^2+x-2\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa
TY
31 tháng 3 2020 lúc 14:23

\(\left(1-2x\right)\left(x-1\right)-5\)

\(=x-1-2x^2+2x-5\)

\(=-2x^2+3x-6\)

\(=-2\left(x^2-2\cdot\frac{3}{4}x+\frac{9}{16}\right)-\frac{39}{8}\)

\(=-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}\)

Mà \(\left(x-\frac{3}{4}\right)^2\ge0\Rightarrow-2\left(x-\frac{3}{4}\right)^2\le0\Rightarrow-2\left(x-\frac{3}{4}\right)^2-\frac{39}{8}< 0\)

Vậy \(\left(1-2x\right)\left(x-1\right)-5\) luôn nhận giá trị âm với mọi giá trị của biến

Bình luận (0)
 Khách vãng lai đã xóa