tìm số nguyên x,y biết 42-3|y-3|=4(2012-x)4
Tìm số nguyên a và y, biết:
(x - 4)(2y + 1) = 12
(x + 1)(xy - 1) = 3
Các bài toán trên đều vô nghiệm vì không có a trong đề bài
Tìm các số nguyên a,v,c,d,e,biết tổng của chúng bằng 0 và a+b=c+d=d+e=2
Tìm các số nguyên x,y,z biết x+y+z=0;x+y=3;y+z=-1
Tìm các số nguyên x, y biết rằng:
x/4−1/y=1/2
\(\frac{1}{y}=\frac{x}{4}-\frac{1}{2}=\frac{x-2}{4}\)
Suy ra y.(x - 2) = 4. Vì x, y ∈ Z nên x - 2 ∈ Z, ta có bảng sau:
y | 1 | -1 | 2 | -2 | 4 | -4 |
x-2 | 4 | -4 | 2 | -2 | 1 | -1 |
x | 6 | -2 | 4 | 0 | 3 | 1 |
Bạn tham khảo thử nhé !
Đố giải được:
Bài 1: Phân tích thừa số nguyên tố của số 6006317. Tính tổng các số đó.
Bài 2: Tính chính xác: 201520142013 x 201320142015 .
Bài 3: Tìm X;Y biết X chia hết cho Y và thỏa mãn:
X : 2659 + Y*34554 = X
Bài 4: So sánh:\(A=\frac{2012^{2011}+3}{2012^{2012}+3}\) và \(B=\frac{2012^{2010}+3}{2012^{2011}+3}\)
Bài 5: Biết a . bcd . abc = abcabc . Vậy abcd = ?
Tìm các số a, b, c biết 2a = 3b, 5b = 7c và 3a – 7b + 5c = -
30.
Tìm các số x, y, z biết x : y : z = 3 : 4 : 5 và 2𝑥^2 + 2𝑦^2 -
3𝑧^2 = -100.
\(2a=3b\Rightarrow\dfrac{a}{3}=\dfrac{b}{2}\Rightarrow\dfrac{a}{21}=\dfrac{b}{14}\\ 5b=7c\Rightarrow\dfrac{b}{7}=\dfrac{c}{5}\Rightarrow\dfrac{b}{14}=\dfrac{c}{10}\\ \Rightarrow\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{21}=\dfrac{b}{14}=\dfrac{c}{10}=\dfrac{3a}{63}=\dfrac{7b}{98}=\dfrac{5c}{50}=\dfrac{3a-7b+5c}{63-98+50}=\dfrac{-30}{15}=-2\\ \Rightarrow\left\{{}\begin{matrix}a=-42\\b=-28\\c=-20\end{matrix}\right.\)
\(x:y:z=3:4:5\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\)
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=k\Rightarrow x=3k;y=4k;z=5k\)
\(2x^2+2y^2-3z^2=-100\\ \Rightarrow18k^2+32k^2-75k^2=-100\\ \Rightarrow-25k^2=-100\Rightarrow k^2=4\Rightarrow\left[{}\begin{matrix}k=2\\k=-2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=6;y=8;z=10\\x=-6;y=-8;z=-10\end{matrix}\right.\)
\(2a=3b\text{⇒}a=\dfrac{3b}{2}\) , \(5b=7c\text{⇒}c=\dfrac{5c}{7}\)
\(3a-7b+5c\) \(=-30\)
⇔ \(3.\dfrac{3b}{2}-7b+5.\dfrac{5b}{7}=-30\)
⇔\(63b-98b+50b=-420\)
⇔\(b=-28\) ⇒\(\left\{{}\begin{matrix}a=-42\\c=-20\end{matrix}\right.\)
2.Tìm hệ số góc của d: y= (m-2)x+3 biết nó song song với d': 2x-y-1=0. Vẽ (d).
3.Tìm hệ số góc của (d): y=(6-m)x+1, biết nó vuông góc với d':x-2y+4=0. Vẽ d
tìm các số nguyên x biết x + y = 2 ; y + z =3 ; z + x = -5
ta có x + y = 2 suy ra x= 2 - y
z + x = -5 suy ra x= -5-z
suy ra x=2 -y = -5 -z=-5-z-2+y= -7 - z + y
thay x=-7 - z + y vào z + x = -5 ta được
z - 7 -z +y = - 5
-7 + y = -5
y=2
suy ra x= -2 , z=-3
tìm số tự nhiên cs 3 chữ số \(\overline{xyz}\) biết : \(\dfrac{x^2}{4}\) =\(\dfrac{y^2}{9}\)=\(\dfrac{z^2}{25}\) và x-y+z =4
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}=\dfrac{x^2}{2^2}=\dfrac{y^2}{3^2}=\dfrac{z^2}{5^2}\rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1`
`-> x/2=y/3=z/5=1`
`-> x=2*1=2, y=3*1=3, z=5*1=5`
=>x/2=y/3=z/5 và x-y+z=4
Áp dụng tính chất của DTSBN, ta được:
x/2=y/3=z/5=(x-y+z)/(2-3+5)=4/4=1
=>x=2; y=3; z=5
Ta có: \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)
\(\Rightarrow\dfrac{x}{2}=1\Rightarrow x=2\)
\(\dfrac{y}{3}=1\Rightarrow y=3\)
\(\dfrac{z}{5}=1\Rightarrow z=5\)
Vậy x =2; y =3; z =5
Tìm x; y nguyên biết : x - 4 / y - 3 = 4 / 3 và x - y = 5